EfficientNet-PyTorch 安装与使用教程

EfficientNet-PyTorch 安装与使用教程

项目地址:https://gitcode.com/gh_mirrors/ef/EfficientNet-PyTorch

1. 项目目录结构及介绍

EfficientNet-PyTorch 的目录结构如下:

efficientnet_pytorch
│   README.md        // 项目说明文档
│   hubconf.py       // 预训练模型配置
│   setup.py         // 安装脚本
│   tests             // 测试代码
│   example           // 示例代码
│
└── efficientnet_pytorch
    │   __init__.py      // 包初始化
    │   efficientnet.py  // EfficientNet 实现
    │
    └── tf_to_pytorch    // TensorFlow 模型权重转换工具
            convert.py   // 转换脚本
  • efficientnet_pytorch: 存放主要的代码实现,包括 efficientnet.py 中的 EfficientNet 类。
  • tests: 包含测试用例,用于验证代码功能。
  • example: 提供了加载预训练模型的示例代码。
  • tf_to_pytorch: 工具模块,用于将 TensorFlow 模型权重转换为 PyTorch 可用的格式。

2. 项目启动文件介绍

该项目的核心在于 efficientnet.py 文件,其中定义了 EfficientNet 类,它是 EfficientNet 模型的 PyTorch 实现。要使用模型,你需要导入并实例化这个类。

from efficientnet_pytorch import EfficientNet

# 加载 EfficientNet-B0 模型
model = EfficientNet.from_pretrained('efficientnet-b0')

此外,hubconf.py 文件包含了预训练模型的一些配置,可以通过 from_hubconf() 函数获取预训练模型参数。

from efficientnet_pytorch import from_hubconf

# 获取 EfficientNet-B0 参数
model_params = from_hubconf('efficientnet-b0')

# 使用这些参数创建模型(非必需,通常直接使用 from_pretrained())
model = EfficientNet(**model_params)

3. 项目的配置文件介绍

由于这是一个轻量级库,它并没有传统意义上的配置文件。不过,hubconf.py 可以视为一个轻量级配置模块,它提供了一个简单的 API 来访问预训练模型的参数。例如,你可以通过调用 from_hubconf(model_name) 得到指定模型的参数字典。

from efficientnet_pytorch import from_hubconf

# 获取 EfficientNet-B4 的参数
model_params_b4 = from_hubconf('efficientnet-b4')
print(model_params_b4)

这通常用于在不使用预训练权重的情况下创建模型,或者自定义模型的某些属性。

安装项目时,只需运行 pip install efficientnet_pytorch 或从源码构建。完成安装后,就可以按上述步骤使用模型了。如需了解更多细节,可以阅读 README.md 文件或查看仓库中提供的示例代码。

EfficientNet-PyTorch A PyTorch implementation of EfficientNet and EfficientNetV2 (coming soon!) EfficientNet-PyTorch 项目地址: https://gitcode.com/gh_mirrors/ef/EfficientNet-PyTorch

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

张亭齐Crown

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值