EfficientNet-PyTorch 安装与使用教程
项目地址:https://gitcode.com/gh_mirrors/ef/EfficientNet-PyTorch
1. 项目目录结构及介绍
EfficientNet-PyTorch
的目录结构如下:
efficientnet_pytorch
│ README.md // 项目说明文档
│ hubconf.py // 预训练模型配置
│ setup.py // 安装脚本
│ tests // 测试代码
│ example // 示例代码
│
└── efficientnet_pytorch
│ __init__.py // 包初始化
│ efficientnet.py // EfficientNet 实现
│
└── tf_to_pytorch // TensorFlow 模型权重转换工具
convert.py // 转换脚本
efficientnet_pytorch
: 存放主要的代码实现,包括efficientnet.py
中的 EfficientNet 类。tests
: 包含测试用例,用于验证代码功能。example
: 提供了加载预训练模型的示例代码。tf_to_pytorch
: 工具模块,用于将 TensorFlow 模型权重转换为 PyTorch 可用的格式。
2. 项目启动文件介绍
该项目的核心在于 efficientnet.py
文件,其中定义了 EfficientNet
类,它是 EfficientNet 模型的 PyTorch 实现。要使用模型,你需要导入并实例化这个类。
from efficientnet_pytorch import EfficientNet
# 加载 EfficientNet-B0 模型
model = EfficientNet.from_pretrained('efficientnet-b0')
此外,hubconf.py
文件包含了预训练模型的一些配置,可以通过 from_hubconf()
函数获取预训练模型参数。
from efficientnet_pytorch import from_hubconf
# 获取 EfficientNet-B0 参数
model_params = from_hubconf('efficientnet-b0')
# 使用这些参数创建模型(非必需,通常直接使用 from_pretrained())
model = EfficientNet(**model_params)
3. 项目的配置文件介绍
由于这是一个轻量级库,它并没有传统意义上的配置文件。不过,hubconf.py
可以视为一个轻量级配置模块,它提供了一个简单的 API 来访问预训练模型的参数。例如,你可以通过调用 from_hubconf(model_name)
得到指定模型的参数字典。
from efficientnet_pytorch import from_hubconf
# 获取 EfficientNet-B4 的参数
model_params_b4 = from_hubconf('efficientnet-b4')
print(model_params_b4)
这通常用于在不使用预训练权重的情况下创建模型,或者自定义模型的某些属性。
安装项目时,只需运行 pip install efficientnet_pytorch
或从源码构建。完成安装后,就可以按上述步骤使用模型了。如需了解更多细节,可以阅读 README.md
文件或查看仓库中提供的示例代码。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考