VQGAN-pytorch 项目教程

VQGAN-pytorch 项目教程

VQGAN-pytorchPytorch implementation of VQGAN (Taming Transformers for High-Resolution Image Synthesis) (https://arxiv.org/pdf/2012.09841.pdf)项目地址:https://gitcode.com/gh_mirrors/vq/VQGAN-pytorch

1. 项目的目录结构及介绍

VQGAN-pytorch 项目的目录结构如下:

VQGAN-pytorch/
├── LICENSE
├── README.md
├── codebook.py
├── decoder.py
├── discriminator.py
├── encoder.py
├── helper.py
├── lpips.py
├── mingpt.py
├── sample_transformer.py
├── training_transformer.py
├── training_vqgan.py
├── transformer.py
├── utils.py
├── vqgan.py

目录结构介绍

  • LICENSE: 项目的许可证文件。
  • README.md: 项目的说明文档。
  • codebook.py: 代码簿相关功能的实现。
  • decoder.py: 解码器相关功能的实现。
  • discriminator.py: 判别器相关功能的实现。
  • encoder.py: 编码器相关功能的实现。
  • helper.py: 辅助功能的实现。
  • lpips.py: LPIPS 相关功能的实现。
  • mingpt.py: mingpt 相关功能的实现。
  • sample_transformer.py: 采样变换器相关功能的实现。
  • training_transformer.py: 训练变换器相关功能的实现。
  • training_vqgan.py: 训练 VQGAN 相关功能的实现。
  • transformer.py: 变换器相关功能的实现。
  • utils.py: 工具函数相关功能的实现。
  • vqgan.py: VQGAN 相关功能的实现。

2. 项目的启动文件介绍

项目的启动文件主要是 training_vqgan.pytraining_transformer.py

training_vqgan.py

这个文件包含了训练 VQGAN 模型的主要逻辑。它负责初始化模型、加载数据、设置训练参数并开始训练过程。

training_transformer.py

这个文件包含了训练变换器模型的主要逻辑。它负责初始化模型、加载数据、设置训练参数并开始训练过程。

3. 项目的配置文件介绍

项目中没有显式的配置文件,但可以通过修改 training_vqgan.pytraining_transformer.py 中的参数来配置训练过程。

配置参数示例

training_vqgan.py 中,可以修改以下参数:

# 示例参数
batch_size = 16
learning_rate = 1e-4
num_epochs = 100

training_transformer.py 中,可以修改以下参数:

# 示例参数
batch_size = 16
learning_rate = 1e-4
num_epochs = 100

通过修改这些参数,可以调整训练的批大小、学习率和训练的轮数。


以上是 VQGAN-pytorch 项目的教程,包含了项目的目录结构、启动文件和配置文件的介绍。希望对你有所帮助!

VQGAN-pytorchPytorch implementation of VQGAN (Taming Transformers for High-Resolution Image Synthesis) (https://arxiv.org/pdf/2012.09841.pdf)项目地址:https://gitcode.com/gh_mirrors/vq/VQGAN-pytorch

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

卢瑜晶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值