V2V4Real开源项目教程
1. 项目介绍
V2V4Real 是一个大规模真实世界的车与车合作感知数据集的官方实现。该项目由加州大学洛杉矶分校(UCLA)移动实验室支持,旨在提供一种用于车辆间合作感知的先进技术。V2V4Real 支持多种感知任务,如3D物体检测和合作跟踪,并为研究人员提供了一个丰富的数据集和一系列先进的模型。
2. 项目快速启动
环境搭建
-
创建 Conda 环境(Python >= 3.7)
conda create -n v2v4real python=3.7 conda activate v2v4real
-
安装 Pytorch(>= 1.12.0 要求)
conda install pytorch==1.12.0 torchvision==0.13.0 cudatoolkit=11.3 -c pytorch -c conda-forge
-
安装 spconv 2.x
pip install spconv-cu113
-
安装其他依赖
pip install -r requirements.txt python setup.py develop
-
安装 bbw nms 计算的 cuda 版本
python opencood/utils/setup.py build_ext --inplace
快速可视化
修改 opencood/hypes_yaml/visualization.yaml
中的 validate_dir
为本地的 OPV2V 数据路径,例如 opv2v/validate
,然后运行以下命令:
cd ~/OpenCOOD
python opencood/visualization/vis_data_sequence.py --color_mode ${COLOR_RENDERING_MODE} --isSim
模型训练
使用 yaml 文件配置训练参数。从零开始训练或从检查点继续训练,运行以下命令:
python opencood/tools/train.py --hypes_yaml ${CONFIG_FILE} [--model_dir ${CHECKPOINT_FOLDER}] [--half]
模型测试
确保检查点文件夹下的 config.yaml
中的 validation_dir
指向测试数据集路径,例如 v2v4real/test
,然后运行以下命令:
python opencood/tools/inference.py --model_dir ${CHECKPOINT_FOLDER} --fusion_method ${FUSION_STRATEGY} [--show_vis] [--show_sequence]
3. 应用案例和最佳实践
- 使用 V2V4Real 数据集进行3D物体检测和合作跟踪的研究。
- 利用提供的模型进行域自适应,以提高在真实世界数据上的性能。
4. 典型生态项目
- OpenCOOD:V2V4Real 代码库基于 OpenCOOD 构建,支持更多感知任务和数据增强。
- 其他相关项目:可以探索与车辆感知和自动驾驶技术相关的其他开源项目,以便整合和扩展 V2V4Real 的功能。