V2V4Real开源项目教程

V2V4Real开源项目教程

V2V4Real [CVPR2023 Highlight] The official codebase for paper "V2V4Real: A large-scale real-world dataset for Vehicle-to-Vehicle Cooperative Perception" V2V4Real 项目地址: https://gitcode.com/gh_mirrors/v2v/V2V4Real

1. 项目介绍

V2V4Real 是一个大规模真实世界的车与车合作感知数据集的官方实现。该项目由加州大学洛杉矶分校(UCLA)移动实验室支持,旨在提供一种用于车辆间合作感知的先进技术。V2V4Real 支持多种感知任务,如3D物体检测和合作跟踪,并为研究人员提供了一个丰富的数据集和一系列先进的模型。

2. 项目快速启动

环境搭建

  1. 创建 Conda 环境(Python >= 3.7)

    conda create -n v2v4real python=3.7
    conda activate v2v4real
    
  2. 安装 Pytorch(>= 1.12.0 要求)

    conda install pytorch==1.12.0 torchvision==0.13.0 cudatoolkit=11.3 -c pytorch -c conda-forge
    
  3. 安装 spconv 2.x

    pip install spconv-cu113
    
  4. 安装其他依赖

    pip install -r requirements.txt
    python setup.py develop
    
  5. 安装 bbw nms 计算的 cuda 版本

    python opencood/utils/setup.py build_ext --inplace
    

快速可视化

修改 opencood/hypes_yaml/visualization.yaml 中的 validate_dir 为本地的 OPV2V 数据路径,例如 opv2v/validate,然后运行以下命令:

cd ~/OpenCOOD
python opencood/visualization/vis_data_sequence.py --color_mode ${COLOR_RENDERING_MODE} --isSim

模型训练

使用 yaml 文件配置训练参数。从零开始训练或从检查点继续训练,运行以下命令:

python opencood/tools/train.py --hypes_yaml ${CONFIG_FILE} [--model_dir ${CHECKPOINT_FOLDER}] [--half]

模型测试

确保检查点文件夹下的 config.yaml 中的 validation_dir 指向测试数据集路径,例如 v2v4real/test,然后运行以下命令:

python opencood/tools/inference.py --model_dir ${CHECKPOINT_FOLDER} --fusion_method ${FUSION_STRATEGY} [--show_vis] [--show_sequence]

3. 应用案例和最佳实践

  • 使用 V2V4Real 数据集进行3D物体检测和合作跟踪的研究。
  • 利用提供的模型进行域自适应,以提高在真实世界数据上的性能。

4. 典型生态项目

  • OpenCOOD:V2V4Real 代码库基于 OpenCOOD 构建,支持更多感知任务和数据增强。
  • 其他相关项目:可以探索与车辆感知和自动驾驶技术相关的其他开源项目,以便整合和扩展 V2V4Real 的功能。

V2V4Real [CVPR2023 Highlight] The official codebase for paper "V2V4Real: A large-scale real-world dataset for Vehicle-to-Vehicle Cooperative Perception" V2V4Real 项目地址: https://gitcode.com/gh_mirrors/v2v/V2V4Real

内容概要:本文档《opencv高频面试题.docx》涵盖了OpenCV的基础概念、图像处理操作、特征提取与匹配、目标检测与机器学习、实际编程题、性能优化以及进阶问题。首先介绍了OpenCV作为开源计算机视觉库,支持图像/视频处理、目标检测、机器学习等领域,应用于安防、自动驾驶、医学影像、AR/VR等方面。接着详细讲述了图像的存储格式(如Mat类)、通道的概念及其转换方法。在图像处理部分,讲解了图像灰度化、二值化、边缘检测等技术。特征提取方面,对比了Harris和Shi-Tomasi角点检测算法,以及SIFT、SURF、ORB的特征提取原理和优缺点。目标检测部分介绍了Haar级联检测原理,并阐述了如何调用深度学习模型进行目标检测。文档还提供了几个实际编程题示例,如读取并显示图像、图像旋转、绘制矩形框并保存等。最后,探讨了性能优化的方法,如使用cv2.UMat(GPU加速)、减少循环等,以及相机标定、光流等进阶问题。 适合人群:对计算机视觉有一定兴趣,具备一定编程基础的学习者或从业者。 使用场景及目标:①帮助学习者掌握OpenCV的基本概念和技术;②为面试准备提供参考;③为实际项目开发提供技术指导。 阅读建议:由于内容涵盖广泛,建议读者根据自身需求有选择地深入学习相关章节,并结合实际编程练习加深理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

舒京涌

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值