Restormer 开源项目使用教程
1. 项目介绍
Restormer 是一个高效的高分辨率图像恢复 Transformer 模型,由 Syed Waqas Zamir 等人开发,并在 CVPR 2022 上进行了口头报告。该模型在图像去雨、单图像运动去模糊、散焦去模糊(单图像和双像素数据)以及图像去噪(高斯灰度/彩色去噪和真实图像去噪)等任务上表现出色,达到了当前最先进的水平。
Restormer 通过在多头部注意力机制和前馈网络中进行关键设计,使其能够捕捉长距离像素交互,同时仍然适用于高分辨率图像。
2. 项目快速启动
安装依赖
首先,确保你已经安装了所有必要的依赖。你可以通过以下命令安装依赖:
pip install -r requirements.txt
运行示例
Restormer 提供了多种图像恢复任务的预训练模型。你可以使用以下命令来测试这些模型:
python demo.py --task Task_Name --input_dir path_to_images --result_dir save_images_here
例如,如果你想对一个目录中的图像进行散焦去模糊处理,可以使用以下命令:
python demo.py --task Single_Image_Defocus_Deblurring --input_dir '/demo/degraded/' --result_dir '/demo/restored/'
3. 应用案例和最佳实践
图像去雨
Restormer 在图像去雨任务中表现出色。你可以使用预训练模型对含有雨滴的图像进行处理,恢复出清晰的图像。
单图像运动去模糊
对于运动模糊的图像,Restormer 能够有效地去除模糊,恢复出清晰的图像。
散焦去模糊
Restormer 支持单图像和双像素数据的散焦去模糊任务,能够有效地恢复出清晰的图像。
图像去噪
无论是高斯噪声还是真实图像中的噪声,Restormer 都能够有效地去除,恢复出高质量的图像。
4. 典型生态项目
Huggingface Spaces
Restormer 已经集成到 Huggingface Spaces 中,你可以通过 Gradio 尝试其 Web 演示。
BasicSR
Restormer 的代码基于 BasicSR 工具箱,BasicSR 是一个用于图像恢复和增强的开源工具箱。
HINet
Restormer 还参考了 HINet 的设计,HINet 是一个用于图像恢复的高效网络架构。
通过这些生态项目,你可以更深入地了解 Restormer 的工作原理,并将其应用于更广泛的场景中。