Restormer 开源项目使用教程

Restormer 开源项目使用教程

Restormer [CVPR 2022--Oral] Restormer: Efficient Transformer for High-Resolution Image Restoration. SOTA for motion deblurring, image deraining, denoising (Gaussian/real data), and defocus deblurring. Restormer 项目地址: https://gitcode.com/gh_mirrors/re/Restormer

1. 项目介绍

Restormer 是一个高效的高分辨率图像恢复 Transformer 模型,由 Syed Waqas Zamir 等人开发,并在 CVPR 2022 上进行了口头报告。该模型在图像去雨、单图像运动去模糊、散焦去模糊(单图像和双像素数据)以及图像去噪(高斯灰度/彩色去噪和真实图像去噪)等任务上表现出色,达到了当前最先进的水平。

Restormer 通过在多头部注意力机制和前馈网络中进行关键设计,使其能够捕捉长距离像素交互,同时仍然适用于高分辨率图像。

2. 项目快速启动

安装依赖

首先,确保你已经安装了所有必要的依赖。你可以通过以下命令安装依赖:

pip install -r requirements.txt

运行示例

Restormer 提供了多种图像恢复任务的预训练模型。你可以使用以下命令来测试这些模型:

python demo.py --task Task_Name --input_dir path_to_images --result_dir save_images_here

例如,如果你想对一个目录中的图像进行散焦去模糊处理,可以使用以下命令:

python demo.py --task Single_Image_Defocus_Deblurring --input_dir '/demo/degraded/' --result_dir '/demo/restored/'

3. 应用案例和最佳实践

图像去雨

Restormer 在图像去雨任务中表现出色。你可以使用预训练模型对含有雨滴的图像进行处理,恢复出清晰的图像。

单图像运动去模糊

对于运动模糊的图像,Restormer 能够有效地去除模糊,恢复出清晰的图像。

散焦去模糊

Restormer 支持单图像和双像素数据的散焦去模糊任务,能够有效地恢复出清晰的图像。

图像去噪

无论是高斯噪声还是真实图像中的噪声,Restormer 都能够有效地去除,恢复出高质量的图像。

4. 典型生态项目

Huggingface Spaces

Restormer 已经集成到 Huggingface Spaces 中,你可以通过 Gradio 尝试其 Web 演示。

BasicSR

Restormer 的代码基于 BasicSR 工具箱,BasicSR 是一个用于图像恢复和增强的开源工具箱。

HINet

Restormer 还参考了 HINet 的设计,HINet 是一个用于图像恢复的高效网络架构。

通过这些生态项目,你可以更深入地了解 Restormer 的工作原理,并将其应用于更广泛的场景中。

Restormer [CVPR 2022--Oral] Restormer: Efficient Transformer for High-Resolution Image Restoration. SOTA for motion deblurring, image deraining, denoising (Gaussian/real data), and defocus deblurring. Restormer 项目地址: https://gitcode.com/gh_mirrors/re/Restormer

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

管琴嘉Derek

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值