CUDA-Learn-Notes 项目教程
1. 项目介绍
CUDA-Learn-Notes 是一个专注于 CUDA/C++ 编程的学习笔记和教程项目。该项目由 DefTruth 维护,旨在帮助开发者深入理解 CUDA 编程模型,并通过实际案例和代码示例来提升 CUDA 编程技能。项目内容涵盖了从基础的 CUDA 编程概念到高级的优化技术,包括但不限于矩阵乘法(GEMM)、向量加法(GEMV)、warp/block reduce、elementwise 操作、softmax、layernorm、rmsnorm 等。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保你已经安装了以下工具和库:
- CUDA Toolkit
- CMake
- Git
2.2 克隆项目
首先,克隆项目到本地:
git clone https://github.com/DefTruth/CUDA-Learn-Notes.git
cd CUDA-Learn-Notes
2.3 构建项目
使用 CMake 构建项目:
mkdir build
cd build
cmake ..
make
2.4 运行示例
项目中包含多个示例代码,你可以通过以下命令运行其中一个示例:
./bin/sgemm_sliced_k_f32_kernel
3. 应用案例和最佳实践
3.1 矩阵乘法(GEMM)
矩阵乘法是 CUDA 编程中的一个经典案例。项目中提供了多个 GEMM 的实现,包括不同数据类型的优化版本。以下是一个简单的 GEMM 示例代码:
__global__ void sgemm_sliced_k_f32_kernel(float* A, float* B, float* C, int M, int N, int K) {
int row = blockIdx.y * blockDim.y + threadIdx.y;
int col = blockIdx.x * blockDim.x + threadIdx.x;
float sum = 0.0f;
for (int k = 0; k < K; ++k) {
sum += A[row * K + k] * B[k * N + col];
}
C[row * N + col] = sum;
}
3.2 向量加法(GEMV)
向量加法是另一个常见的 CUDA 编程任务。以下是一个简单的 GEMV 示例代码:
__global__ void sgemv_k32_f32_kernel(float* A, float* x, float* y, int M, int N) {
int row = blockIdx.x * blockDim.x + threadIdx.x;
float sum = 0.0f;
for (int k = 0; k < N; ++k) {
sum += A[row * N + k] * x[k];
}
y[row] = sum;
}
3.3 最佳实践
- 内存管理:合理使用全局内存、共享内存和寄存器,以减少内存访问延迟。
- 线程块和网格设计:根据任务的并行度设计合适的线程块和网格大小。
- 数据局部性:利用数据局部性优化内存访问模式,减少全局内存的访问次数。
4. 典型生态项目
4.1 CUTLASS
CUTLASS 是 NVIDIA 提供的一个 CUDA 模板库,用于高性能矩阵运算。它提供了高度优化的 GEMM、GEMV 等操作的实现,可以作为 CUDA-Learn-Notes 项目的补充。
4.2 PyTorch
PyTorch 是一个流行的深度学习框架,支持 CUDA 加速。通过 PyTorch 的 CUDA 扩展,开发者可以将 CUDA-Learn-Notes 中的优化技术应用到深度学习模型中。
4.3 TensorRT
TensorRT 是 NVIDIA 提供的高性能推理引擎,支持 CUDA 加速。通过 TensorRT,开发者可以将 CUDA-Learn-Notes 中的优化技术应用到推理任务中,提升推理性能。
通过以上模块的介绍,希望你能快速上手 CUDA-Learn-Notes 项目,并在实际应用中获得更好的性能优化效果。