CUDA-Learn-Notes 项目教程

CUDA-Learn-Notes 项目教程

CUDA-Learn-Notes 🎉CUDA 笔记 / 大模型手撕CUDA / C++笔记,更新随缘: flash_attn、sgemm、sgemv、warp reduce、block reduce、dot product、elementwise、softmax、layernorm、rmsnorm、hist etc. CUDA-Learn-Notes 项目地址: https://gitcode.com/gh_mirrors/cu/CUDA-Learn-Notes

1. 项目介绍

CUDA-Learn-Notes 是一个专注于 CUDA/C++ 编程的学习笔记和教程项目。该项目由 DefTruth 维护,旨在帮助开发者深入理解 CUDA 编程模型,并通过实际案例和代码示例来提升 CUDA 编程技能。项目内容涵盖了从基础的 CUDA 编程概念到高级的优化技术,包括但不限于矩阵乘法(GEMM)、向量加法(GEMV)、warp/block reduce、elementwise 操作、softmax、layernorm、rmsnorm 等。

2. 项目快速启动

2.1 环境准备

在开始之前,请确保你已经安装了以下工具和库:

  • CUDA Toolkit
  • CMake
  • Git

2.2 克隆项目

首先,克隆项目到本地:

git clone https://github.com/DefTruth/CUDA-Learn-Notes.git
cd CUDA-Learn-Notes

2.3 构建项目

使用 CMake 构建项目:

mkdir build
cd build
cmake ..
make

2.4 运行示例

项目中包含多个示例代码,你可以通过以下命令运行其中一个示例:

./bin/sgemm_sliced_k_f32_kernel

3. 应用案例和最佳实践

3.1 矩阵乘法(GEMM)

矩阵乘法是 CUDA 编程中的一个经典案例。项目中提供了多个 GEMM 的实现,包括不同数据类型的优化版本。以下是一个简单的 GEMM 示例代码:

__global__ void sgemm_sliced_k_f32_kernel(float* A, float* B, float* C, int M, int N, int K) {
    int row = blockIdx.y * blockDim.y + threadIdx.y;
    int col = blockIdx.x * blockDim.x + threadIdx.x;

    float sum = 0.0f;
    for (int k = 0; k < K; ++k) {
        sum += A[row * K + k] * B[k * N + col];
    }
    C[row * N + col] = sum;
}

3.2 向量加法(GEMV)

向量加法是另一个常见的 CUDA 编程任务。以下是一个简单的 GEMV 示例代码:

__global__ void sgemv_k32_f32_kernel(float* A, float* x, float* y, int M, int N) {
    int row = blockIdx.x * blockDim.x + threadIdx.x;

    float sum = 0.0f;
    for (int k = 0; k < N; ++k) {
        sum += A[row * N + k] * x[k];
    }
    y[row] = sum;
}

3.3 最佳实践

  • 内存管理:合理使用全局内存、共享内存和寄存器,以减少内存访问延迟。
  • 线程块和网格设计:根据任务的并行度设计合适的线程块和网格大小。
  • 数据局部性:利用数据局部性优化内存访问模式,减少全局内存的访问次数。

4. 典型生态项目

4.1 CUTLASS

CUTLASS 是 NVIDIA 提供的一个 CUDA 模板库,用于高性能矩阵运算。它提供了高度优化的 GEMM、GEMV 等操作的实现,可以作为 CUDA-Learn-Notes 项目的补充。

4.2 PyTorch

PyTorch 是一个流行的深度学习框架,支持 CUDA 加速。通过 PyTorch 的 CUDA 扩展,开发者可以将 CUDA-Learn-Notes 中的优化技术应用到深度学习模型中。

4.3 TensorRT

TensorRT 是 NVIDIA 提供的高性能推理引擎,支持 CUDA 加速。通过 TensorRT,开发者可以将 CUDA-Learn-Notes 中的优化技术应用到推理任务中,提升推理性能。

通过以上模块的介绍,希望你能快速上手 CUDA-Learn-Notes 项目,并在实际应用中获得更好的性能优化效果。

CUDA-Learn-Notes 🎉CUDA 笔记 / 大模型手撕CUDA / C++笔记,更新随缘: flash_attn、sgemm、sgemv、warp reduce、block reduce、dot product、elementwise、softmax、layernorm、rmsnorm、hist etc. CUDA-Learn-Notes 项目地址: https://gitcode.com/gh_mirrors/cu/CUDA-Learn-Notes

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

蔡欣洁

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值