NeuralForecast: 深度学习时间序列预测工具库
项目地址:https://gitcode.com/gh_mirrors/ne/neuralforecast
项目介绍
NeuralForecast 是一个专注于深度学习时间序列预测的开放源码项目。它提供了广泛且高性能的神经网络模型集合,从传统的RNNs到最新的transformers架构一应俱全。这其中包括MLP、LSTM、GRU、RNN、TCN、TimesNet、BiTCN、DeepAR等经典模型,以及最新研发的NBEATS、NBEATSx、NHITS、TiDE、DeepNPTS、TSMixer、TSMixerx、MLPMultivariate、DLinear、NLinear、TFT、Informer、AutoFormer、FedFormer、PatchTST、iTransformer、StemGNN 和TimeLLM 等前沿创新模型。
该项目致力于提升模型性能、使用便利性及稳定性。其特点包括:
- 高质量模型实现:超过30个经过验证的高效模型。
- 易于使用:简洁明了的API设计。
- 动态更新:持续引入最新的研究进展。
- 社区支持:活跃的GitHub社区提供帮助和支持。
项目快速启动
安装
安装 NeuralForecast
可以通过以下方式完成:
使用pip安装
pip install neuralforecast
或者使用conda环境进行安装:
conda install -c nixtla neuralforecast
推荐在Python虚拟环境中或Conda环境中执行上述命令。
快速示例
下面是一个基本示例,展示如何利用NeuralForecast库中的NBEATS模型对时间序列数据进行拟合和预测:
from neuralforecast.models import NBEATS
from neuralforecast.utils import AirPassengersDF
from neuralforecast import NeuralForecast
# 初始化NeuralForecast对象
nf = NeuralForecast(
models=[NBEATS(input_size=24, h=12, max_steps=100)],
freq='M'
)
# 使用预定义的数据集训练模型
nf.fit(df=AirPassengersDF)
# 进行预测
predictions = nf.predict()
以上代码展示了如何加载预置的时间序列数据(如航空旅客数据),初始化NBEATS模型,并配置必要的参数(输入大小、预测长度和最大迭代步数)。接下来,调用.fit()
方法对模型进行训练,然后通过.predict()
来获取预测结果。
应用案例和最佳实践
在实际操作中,NeuralForecast
的灵活性允许您处理各种复杂场景。例如,在金融领域,您可以运用此工具库分析股票价格趋势;在零售业,则可预测未来销售量以优化库存管理。
为了确保获得最佳效果,建议遵循以下步骤:
- 数据预处理: 清洗和归一化您的时间序列数据,排除异常值并填充缺失值。
- 特征工程: 根据业务需求添加额外特征,如节假日标记或季节性指标。
- 超参数调整: 利用网格搜索或随机搜索找到最适合特定任务的超参数组合。
- 验证策略: 设计交叉验证方案,如时间序列拆分法,以评估模型的泛化能力。
典型生态项目
- TimeSeriesAnalysis: 此项目利用
NeuralForecast
提供的模型库来进行时间序列的详细分析,涵盖模型比较、实时预测及可视化等方面。 - FinancialForecast: 在金融行业中,使用该工具包可以构建高精度的财务预测模型,比如股价预测、风险控制等。
- RetailSalesPrediction: 对零售商而言,借助
NeuralForecast
可提高销量预测的准确性,辅助决策过程,减少过度库存导致的成本浪费。
这些示例仅是冰山一角,NeuralForecast
的应用场景远不止于此。无论是学术研究还是企业级部署,都能从中获益匪浅。随着更多用户加入贡献,这个工具箱的功能将持续拓展,为全球开发者带来更强大的技术支持。
总结来说,NeuralForecast
不仅仅是一个技术框架,它是连接理论研究成果与现实世界需求的重要桥梁。无论你是初学者还是资深数据科学家,都可以在其中找到适合自己的工具和技术,推动时间序列预测领域的进步和发展。