NeuralForecast: 深度学习时间序列预测工具库

NeuralForecast: 深度学习时间序列预测工具库

项目地址:https://gitcode.com/gh_mirrors/ne/neuralforecast

项目介绍

NeuralForecast 是一个专注于深度学习时间序列预测的开放源码项目。它提供了广泛且高性能的神经网络模型集合,从传统的RNNs到最新的transformers架构一应俱全。这其中包括MLP、LSTM、GRU、RNN、TCN、TimesNet、BiTCN、DeepAR等经典模型,以及最新研发的NBEATS、NBEATSx、NHITS、TiDE、DeepNPTS、TSMixer、TSMixerx、MLPMultivariate、DLinear、NLinear、TFT、Informer、AutoFormer、FedFormer、PatchTST、iTransformer、StemGNN 和TimeLLM 等前沿创新模型。

该项目致力于提升模型性能、使用便利性及稳定性。其特点包括:

  • 高质量模型实现:超过30个经过验证的高效模型。
  • 易于使用:简洁明了的API设计。
  • 动态更新:持续引入最新的研究进展。
  • 社区支持:活跃的GitHub社区提供帮助和支持。

项目快速启动

安装

安装 NeuralForecast 可以通过以下方式完成:

使用pip安装
pip install neuralforecast

或者使用conda环境进行安装:

conda install -c nixtla neuralforecast

推荐在Python虚拟环境中或Conda环境中执行上述命令。

快速示例

下面是一个基本示例,展示如何利用NeuralForecast库中的NBEATS模型对时间序列数据进行拟合和预测:

from neuralforecast.models import NBEATS
from neuralforecast.utils import AirPassengersDF
from neuralforecast import NeuralForecast

# 初始化NeuralForecast对象
nf = NeuralForecast(
    models=[NBEATS(input_size=24, h=12, max_steps=100)],
    freq='M'
)

# 使用预定义的数据集训练模型
nf.fit(df=AirPassengersDF)

# 进行预测
predictions = nf.predict()

以上代码展示了如何加载预置的时间序列数据(如航空旅客数据),初始化NBEATS模型,并配置必要的参数(输入大小、预测长度和最大迭代步数)。接下来,调用.fit()方法对模型进行训练,然后通过.predict()来获取预测结果。

应用案例和最佳实践

在实际操作中,NeuralForecast 的灵活性允许您处理各种复杂场景。例如,在金融领域,您可以运用此工具库分析股票价格趋势;在零售业,则可预测未来销售量以优化库存管理。

为了确保获得最佳效果,建议遵循以下步骤:

  1. 数据预处理: 清洗和归一化您的时间序列数据,排除异常值并填充缺失值。
  2. 特征工程: 根据业务需求添加额外特征,如节假日标记或季节性指标。
  3. 超参数调整: 利用网格搜索或随机搜索找到最适合特定任务的超参数组合。
  4. 验证策略: 设计交叉验证方案,如时间序列拆分法,以评估模型的泛化能力。

典型生态项目

  • TimeSeriesAnalysis: 此项目利用 NeuralForecast 提供的模型库来进行时间序列的详细分析,涵盖模型比较、实时预测及可视化等方面。
  • FinancialForecast: 在金融行业中,使用该工具包可以构建高精度的财务预测模型,比如股价预测、风险控制等。
  • RetailSalesPrediction: 对零售商而言,借助 NeuralForecast 可提高销量预测的准确性,辅助决策过程,减少过度库存导致的成本浪费。

这些示例仅是冰山一角,NeuralForecast 的应用场景远不止于此。无论是学术研究还是企业级部署,都能从中获益匪浅。随着更多用户加入贡献,这个工具箱的功能将持续拓展,为全球开发者带来更强大的技术支持。

总结来说,NeuralForecast 不仅仅是一个技术框架,它是连接理论研究成果与现实世界需求的重要桥梁。无论你是初学者还是资深数据科学家,都可以在其中找到适合自己的工具和技术,推动时间序列预测领域的进步和发展。

neuralforecast Nixtla/neuralforecast - 一个Python库,提供统一的接口来训练和预测时间序列数据,使用神经网络方法,如N-BEATS和N-HITS,以及传统的统计方法。 neuralforecast 项目地址: https://gitcode.com/gh_mirrors/ne/neuralforecast

### 深度学习所需的主要包、框架和工具 #### 主流深度学习框架 主流的深度学习框架提供了构建神经网络的基础功能,这些框架通常集成了自动微分、张量运算以及硬件加速支持等功能。以下是几个常用的深度学习框架: - **TensorFlow**: TensorFlow 是由 Google 开发的一个开源机器学习框架,它提供了一个灵活的生态系统来开发各种类型的模型[^1]。 - **PyTorch**: PyTorch 是 Facebook 推出的一种基于 Python 的深度学习框架,以其动态计算图特性而闻名,这使得调试和实验更加直观[^3]。 - **Keras**: Keras 是一个高级 API,可以运行在 TensorFlow 或其他后端之上,专注于快速原型设计和易用性。 #### 常见工具库和支持软件 除了核心框架外,还有一些辅助性的工具和库可以帮助开发者更高效地工作: - **NumPy/SciPy/Pandas**: 这些科学计算库虽然不是专门为深度学习设计,但在数据预处理阶段非常有用。 - **Scikit-Learn**: 提供了许多经典的机器学习算法实现,可用于特征工程或者作为基线比较方法。 - **Matplotlib/Seaborn**: 数据可视化对于探索性和诊断分析至关重要,这两个库能很好地满足这一需求[^2]。 - **NeuralForecast**: 如果特别关注时间序列预测问题,则可能需要用到专门针对此类任务优化过的解决方案,比如 NeuralForecast 库可以通过 pip 安装[^4]。 #### 调试与性能调优工具 为了提高模型质量和效率,还需要依赖一系列专用工具来进行监控、调整参数设置等工作: - **TensorBoard**: TensorFlow 自带的强大日志记录及展示平台,允许用户查看损失曲线变化趋势以及其他元信息统计图表等。 - **Debugging Tools (e.g., PyCharm Debugger)**: 当遇到难以定位错误时,利用IDE内置断点机制逐行执行代码会很有帮助;另外还有像 PySnooper 这样的轻量化选项可供选择。 综上所述,在实际项目中往往需要综合运用上述提到的各种资源才能达到最佳效果。 ```python import numpy as np from sklearn.model_selection import train_test_split import tensorflow.keras as keras # Example of using NumPy and Scikit-Learn with a simple model creation in Keras data = np.random.rand(100, 5) labels = np.random.randint(2, size=(100,)) X_train, X_val, Y_train, Y_val = train_test_split(data, labels) model = keras.Sequential([ keras.layers.Dense(units=8, activation='relu', input_shape=[5]), keras.layers.Dense(units=1, activation='sigmoid') ]) model.compile(optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"]) history = model.fit(X_train, Y_train, validation_data=(X_val,Y_val), epochs=10) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

吴毓佳

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值