CLIP知识蒸馏项目教程

CLIP知识蒸馏项目教程

clip-distillation Zero-label image classification via OpenCLIP knowledge distillation clip-distillation 项目地址: https://gitcode.com/gh_mirrors/cl/clip-distillation

1. 项目介绍

1.1 项目概述

clip-distillation 是一个由NVIDIA-AI-IOT团队开发的开源项目,旨在通过OpenCLIP模型的知识蒸馏技术,实现零标签图像分类。该项目允许用户在没有标注数据的情况下,创建自定义的图像分类模型。即使您不需要直接使用图像分类器,该项目也可以作为如何使用知识蒸馏优化模型以进行推理的灵感,或者作为如何在NVIDIA Jetson平台上使用量化感知训练和结构化稀疏性训练模型的示例。

1.2 主要功能

  • 数据搜索与下载:从LAION数据库中搜索并下载相关图像数据。
  • OpenCLIP嵌入计算:预计算OpenCLIP模型的嵌入,以加速训练过程。
  • 学生模型训练:训练学生CNN模型以模仿OpenCLIP模型。
  • 推理支持:使用NVIDIA TensorRT进行推理,支持INT8模型和2:4结构化稀疏模型的加速。

2. 项目快速启动

2.1 环境准备

确保您已经安装了Python 3.x,并安装了以下依赖库:

pip install torch torchvision openclip-torch

2.2 数据准备

首先,创建一个包含文本提示的文件 data/text_prompts.txt,每行一个提示:

a dog
a cat

2.3 搜索并下载图像

使用以下命令搜索并下载相关图像:

python3 search_clip_images.py \
    "data/text_prompts.txt" \
    "data/image_urls.txt" \
    -n 5000 \
    -m 10000 \
    --max_workers 2 \
    --append

python3 download_images.py \
    "data/image_urls.txt" \
    "data/images" \
    --max_workers 32 \
    --timeout 2

2.4 计算OpenCLIP嵌入

预计算OpenCLIP模型的嵌入:

python3 compute_openclip_embeddings.py \
    data/images \
    data/embeddings \
    --batch_size 16 \
    --num_workers 8 \
    --model_name ViT-B-32 \
    --pretrained laion2b_s34b_b79k

2.5 训练学生模型

使用以下命令训练学生CNN模型:

python3 distil_model_embeddings.py \
    resnet18 \
    data/images \
    data/embeddings \
    data/models/resnet18 \
    --output_dim 512 \
    --pretrained

3. 应用案例和最佳实践

3.1 零标签图像分类

通过知识蒸馏技术,用户可以在没有标注数据的情况下,创建自定义的图像分类模型。这对于需要快速部署图像分类解决方案的场景非常有用。

3.2 模型优化

项目支持量化感知训练(QAT)和结构化稀疏性训练,可以在NVIDIA Jetson平台上实现更高效的推理。

4. 典型生态项目

4.1 NVIDIA Jetson平台

该项目特别适用于NVIDIA Jetson平台,如Jetson Orin Nano,通过结构化稀疏性和量化感知训练,可以显著提升推理性能。

4.2 OpenCLIP

OpenCLIP是该项目的基础模型,提供了强大的图像和文本嵌入功能,为知识蒸馏提供了坚实的基础。

4.3 TensorRT

NVIDIA TensorRT用于加速推理过程,支持INT8模型和结构化稀疏模型的加速,进一步优化了模型在边缘设备上的性能。

通过以上步骤,您可以快速上手并应用clip-distillation项目,实现高效的零标签图像分类。

clip-distillation Zero-label image classification via OpenCLIP knowledge distillation clip-distillation 项目地址: https://gitcode.com/gh_mirrors/cl/clip-distillation

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

怀创宪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值