CLIP知识蒸馏项目教程
1. 项目介绍
1.1 项目概述
clip-distillation
是一个由NVIDIA-AI-IOT团队开发的开源项目,旨在通过OpenCLIP模型的知识蒸馏技术,实现零标签图像分类。该项目允许用户在没有标注数据的情况下,创建自定义的图像分类模型。即使您不需要直接使用图像分类器,该项目也可以作为如何使用知识蒸馏优化模型以进行推理的灵感,或者作为如何在NVIDIA Jetson平台上使用量化感知训练和结构化稀疏性训练模型的示例。
1.2 主要功能
- 数据搜索与下载:从LAION数据库中搜索并下载相关图像数据。
- OpenCLIP嵌入计算:预计算OpenCLIP模型的嵌入,以加速训练过程。
- 学生模型训练:训练学生CNN模型以模仿OpenCLIP模型。
- 推理支持:使用NVIDIA TensorRT进行推理,支持INT8模型和2:4结构化稀疏模型的加速。
2. 项目快速启动
2.1 环境准备
确保您已经安装了Python 3.x,并安装了以下依赖库:
pip install torch torchvision openclip-torch
2.2 数据准备
首先,创建一个包含文本提示的文件 data/text_prompts.txt
,每行一个提示:
a dog
a cat
2.3 搜索并下载图像
使用以下命令搜索并下载相关图像:
python3 search_clip_images.py \
"data/text_prompts.txt" \
"data/image_urls.txt" \
-n 5000 \
-m 10000 \
--max_workers 2 \
--append
python3 download_images.py \
"data/image_urls.txt" \
"data/images" \
--max_workers 32 \
--timeout 2
2.4 计算OpenCLIP嵌入
预计算OpenCLIP模型的嵌入:
python3 compute_openclip_embeddings.py \
data/images \
data/embeddings \
--batch_size 16 \
--num_workers 8 \
--model_name ViT-B-32 \
--pretrained laion2b_s34b_b79k
2.5 训练学生模型
使用以下命令训练学生CNN模型:
python3 distil_model_embeddings.py \
resnet18 \
data/images \
data/embeddings \
data/models/resnet18 \
--output_dim 512 \
--pretrained
3. 应用案例和最佳实践
3.1 零标签图像分类
通过知识蒸馏技术,用户可以在没有标注数据的情况下,创建自定义的图像分类模型。这对于需要快速部署图像分类解决方案的场景非常有用。
3.2 模型优化
项目支持量化感知训练(QAT)和结构化稀疏性训练,可以在NVIDIA Jetson平台上实现更高效的推理。
4. 典型生态项目
4.1 NVIDIA Jetson平台
该项目特别适用于NVIDIA Jetson平台,如Jetson Orin Nano,通过结构化稀疏性和量化感知训练,可以显著提升推理性能。
4.2 OpenCLIP
OpenCLIP是该项目的基础模型,提供了强大的图像和文本嵌入功能,为知识蒸馏提供了坚实的基础。
4.3 TensorRT
NVIDIA TensorRT用于加速推理过程,支持INT8模型和结构化稀疏模型的加速,进一步优化了模型在边缘设备上的性能。
通过以上步骤,您可以快速上手并应用clip-distillation
项目,实现高效的零标签图像分类。