FAST-LIO_ROS2: 快速、稳健的LiDAR-Inertial定位解决方案
1. 项目介绍
FAST-LIO_ROS2 是一个基于ROS2的快速LiDAR-Inertial定位和建图开源项目。该项目通过紧密耦合的迭代扩展卡尔曼滤波器,将LiDAR特征点与IMU数据融合,实现了在动态、噪声环境下的稳健导航。其特点包括:
- 快速的迭代卡尔曼滤波器进行定位优化
- 在大多数稳定环境中自动初始化
- 并行KD-Tree搜索以降低计算量
- 支持多种类型的LiDAR,包括旋转式和固态LiDAR
2. 项目快速启动
2.1 环境准备
- Ubuntu 20.04 或更高版本
- ROS 2 Foxy 或更高版本(推荐使用ROS-Humble)
- PCL 1.8 或更高版本
- Eigen 3.3.4 或更高版本
- livox_ros_driver2
确保已经安装并正确配置了上述依赖项。
2.2 克隆与编译
cd <ros2_ws>/src
git clone https://github.com/Ericsii/FAST_LIO_ROS2.git --recursive
cd ..
rosdep install --from-paths src --ignore-src -y
colcon build --symlink-install
./install/setup.bash
确保在编译前已经正确设置了livox_ros_driver。
2.3 运行
确保LiDAR和IMU已经同步。
ros2 launch fast_lio mapping.launch.py config_file:=avia.yaml
根据需要修改config_file
参数,选择不同的配置文件。
启动livox ros driver:
ros2 launch livox_ros_driver2 msg_MID360_launch.py
对于使用外部IMU的Livox系列LiDAR,需要在config/avia.yaml
中设置相关参数。
3. 应用案例和最佳实践
- 数据同步:确保LiDAR和IMU的数据同步是关键,否则可能会出现定位错误。
- 参数调优:根据实际环境调整配置文件中的参数,以获得最佳性能。
- 地图保存:在配置文件中启用
pcd_save.pcd_save_en
,并设置map_file_path
以保存点云地图。
4. 典型生态项目
- R2LIVE:一个使用FAST-LIO作为前端的LiDAR-inertial-Vision融合项目。
- LI_Init:一个用于LiDAR-IMU外部初始化和同步的实时包。
- FAST-LIO-LOCALIZATION:集成了Re-localization功能的FAST-LIO。
以上是FAST-LIO_ROS2项目的简要介绍、快速启动指南、应用案例以及相关生态项目。希望对您的使用有所帮助。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考