音乐流派分类深度学习项目推荐
本项目是基于深度学习的音乐流派分类系统,主要使用了Python编程语言,并依赖于Keras框架进行模型的构建与训练。
1. 项目基础介绍
本项目改编自Choi等人的模型,旨在开发一个自定义的音乐流派分类系统,使用我们自己的数据集和流派标签。系统接收音乐的频谱图作为输入,通过结合卷积神经网络(CNN)和循环神经网络(RNN)对图像进行分析,最终输出预测的音乐流派向量。本项目已经在一个小型数据集上进行了微调(每个流派30首歌曲),并在GTZAN数据集上测试,实现了80%的准确率。
2. 项目核心功能
- 音乐流派识别:系统能够识别并分类常见的音乐流派,如蓝调、古典、乡村、迪斯可、嘻哈、爵士、金属、流行、雷鬼和摇滚等。
- 深度学习模型:利用CNN和RNN的组合模型,对音乐频谱图进行分析,以达到分类的目的。
- 自定义数据集训练:支持使用自定义数据集进行模型的训练,使系统适应特定需求。
3. 项目最近更新的功能
- 模型微调:最近更新中,项目团队对模型进行了进一步的微调,提高了识别准确率。
- 代码优化:对项目代码进行了优化,提高了运行效率和稳定性。
- 文档更新:更新了项目文档,包括安装指南、使用说明和示例代码,使得项目更加易于上手和理解。
项目提供了一个简单易用的示例脚本 quick_test.py
,用户可以快速测试音乐流派预测功能。此外,项目还提供了详细的安装依赖和运行步骤,帮助用户在自己的环境中复现和扩展项目功能。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考