音乐流派分类深度学习项目推荐

音乐流派分类深度学习项目推荐

Music-Genre-Classification-with-Deep-Learning Using deep learning to predict the genre of a song. Music-Genre-Classification-with-Deep-Learning 项目地址: https://gitcode.com/gh_mirrors/mu/Music-Genre-Classification-with-Deep-Learning

本项目是基于深度学习的音乐流派分类系统,主要使用了Python编程语言,并依赖于Keras框架进行模型的构建与训练。

1. 项目基础介绍

本项目改编自Choi等人的模型,旨在开发一个自定义的音乐流派分类系统,使用我们自己的数据集和流派标签。系统接收音乐的频谱图作为输入,通过结合卷积神经网络(CNN)和循环神经网络(RNN)对图像进行分析,最终输出预测的音乐流派向量。本项目已经在一个小型数据集上进行了微调(每个流派30首歌曲),并在GTZAN数据集上测试,实现了80%的准确率。

2. 项目核心功能

  • 音乐流派识别:系统能够识别并分类常见的音乐流派,如蓝调、古典、乡村、迪斯可、嘻哈、爵士、金属、流行、雷鬼和摇滚等。
  • 深度学习模型:利用CNN和RNN的组合模型,对音乐频谱图进行分析,以达到分类的目的。
  • 自定义数据集训练:支持使用自定义数据集进行模型的训练,使系统适应特定需求。

3. 项目最近更新的功能

  • 模型微调:最近更新中,项目团队对模型进行了进一步的微调,提高了识别准确率。
  • 代码优化:对项目代码进行了优化,提高了运行效率和稳定性。
  • 文档更新:更新了项目文档,包括安装指南、使用说明和示例代码,使得项目更加易于上手和理解。

项目提供了一个简单易用的示例脚本 quick_test.py,用户可以快速测试音乐流派预测功能。此外,项目还提供了详细的安装依赖和运行步骤,帮助用户在自己的环境中复现和扩展项目功能。

Music-Genre-Classification-with-Deep-Learning Using deep learning to predict the genre of a song. Music-Genre-Classification-with-Deep-Learning 项目地址: https://gitcode.com/gh_mirrors/mu/Music-Genre-Classification-with-Deep-Learning

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

罗愉伊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值