推荐开源项目:Learning to Transfer Texture from Clothing Images to 3D Humans
项目介绍
在计算机视觉和图形学领域,将2D服装图像纹理映射到3D人体模型上一直是一个具有挑战性的课题。今天,我们向大家推荐一个由Aymen Mir、Thiemo Alldieck和Gerard Pons-Moll共同开发的优秀开源项目——Learning to Transfer Texture from Clothing Images to 3D Humans。该项目曾在2020年IEEE计算机视觉和模式识别会议上发表,并引起了广泛关注。
该项目提供了一套完整的代码,能够将服装图像的纹理无缝地转移到3D人体模型上,生成逼真的视觉效果。无论是学术研究还是实际应用,该项目都具有极高的价值。
项目技术分析
该项目采用了前沿的深度学习技术,主要包括以下几部分:
- 数据预处理:通过爬取Zalando、Jack and Jones和Tom-Tailor等网站的服装图像,并使用Grab Cut算法提取服装的轮廓和纹理。
- 神经网络模型:包括映射网络和分割网络,分别用于学习和优化纹理映射过程。
- 渲染引擎:利用Blender进行3D渲染,生成最终的视觉效果。
项目的技术架构如下:
- 数据获取:通过爬虫获取服装图像。
- 轮廓提取:使用Grab Cut算法进行图像分割。
- 神经网络训练:训练映射和分割网络。
- 3D渲染:利用Blender将纹理映射到SMPL人体模型上。
项目及技术应用场景
该项目的应用场景非常广泛,主要包括:
- 虚拟试衣:用户可以通过上传服装图片,实时查看服装在3D人体模型上的效果。
- 游戏开发:为游戏中的虚拟角色快速生成逼真的服装纹理。
- 时尚设计:设计师可以快速验证设计效果,提高设计效率。
- 学术研究:为计算机视觉和图形学领域的研究提供强大的工具和数据支持。
项目特点
- 高效性:通过预训练模型和自动化流程,快速实现纹理映射。
- 逼真效果:生成的3D人体模型纹理逼真,视觉效果出色。
- 易于使用:提供详细的安装和使用指南,用户只需简单几步即可运行演示。
- 开源免费:项目代码完全开源,适用于非商业科学研究的免费使用。
安装和使用
- 安装Blender:下载并安装Blender 2.79版本。
- 克隆仓库:
git clone https://github.com/aymenmir1/pix2surf
- 安装依赖:
source scripts/install_conda.sh
- 下载预训练权重和数据:
source scripts/prepare_data.sh
- 运行演示:
python demo.py
通过以上步骤,你就可以看到生成的3D人体模型纹理效果。更多参数和细节可以通过修改脚本进行调整。
引用和许可
如果你在研究中使用了该项目的代码,请考虑引用他们的论文:
@inproceedings{mir20pix2surf,
title = {Learning to Transfer Texture from Clothing Images to 3D Humans},
author = {Mir, Aymen and Alldieck, Thiemo and Pons-Moll, Gerard},
booktitle = {{IEEE} Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {jun},
organization = {{IEEE}},
year = {2020},
}
该项目许可适用于非商业科学研究的用途,具体条款请参考LICENSE文件。
总之,Learning to Transfer Texture from Clothing Images to 3D Humans是一个非常值得推荐的开源项目,无论是对于学术研究还是实际应用,都具有极高的价值。欢迎大家尝试和使用!