Trackmania RL 项目教程
1. 项目的目录结构及介绍
Trackmania RL 项目的目录结构如下:
tmrl/
├── docs/
│ ├── images/
│ └── ...
├── examples/
│ ├── config/
│ └── ...
├── src/
│ ├── tmrl/
│ │ ├── config/
│ │ ├── envs/
│ │ ├── models/
│ │ ├── training/
│ │ └── ...
│ └── ...
├── tests/
│ └── ...
├── .gitignore
├── LICENSE
├── README.md
└── setup.py
目录结构介绍
- docs/: 包含项目的文档文件,如图片和其他资源。
- examples/: 包含项目的示例代码和配置文件。
- src/tmrl/: 项目的核心源代码目录,包含配置、环境、模型和训练等模块。
- tests/: 包含项目的测试代码。
- .gitignore: Git 忽略文件,指定哪些文件和目录不需要被版本控制。
- LICENSE: 项目的开源许可证文件。
- README.md: 项目的介绍和使用说明。
- setup.py: 项目的安装脚本。
2. 项目的启动文件介绍
项目的启动文件通常位于 src/tmrl/
目录下,具体文件可能包括:
- main.py: 项目的入口文件,负责启动整个应用程序。
- train.py: 用于训练模型的脚本。
- evaluate.py: 用于评估模型的脚本。
启动文件介绍
- main.py: 该文件是项目的入口点,通常包含初始化配置、加载环境、启动训练或评估等逻辑。
- train.py: 该文件负责模型的训练过程,包括数据加载、模型训练、保存模型等。
- evaluate.py: 该文件用于评估训练好的模型,通常包括加载模型、测试数据集、输出评估结果等。
3. 项目的配置文件介绍
项目的配置文件通常位于 src/tmrl/config/
目录下,常见的配置文件包括:
- config.yaml: 项目的全局配置文件,包含训练参数、环境配置、模型参数等。
- environment.yaml: 环境配置文件,包含环境相关的参数,如游戏设置、传感器配置等。
- model_config.yaml: 模型配置文件,包含模型的结构、超参数等。
配置文件介绍
- config.yaml: 该文件包含项目的全局配置,如训练轮数、学习率、批量大小等。
- environment.yaml: 该文件定义了环境的配置,如游戏的速度、视角、传感器类型等。
- model_config.yaml: 该文件定义了模型的结构和超参数,如网络层数、激活函数、优化器等。
通过这些配置文件,用户可以灵活地调整项目的运行参数,以适应不同的需求和环境。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考