SWE-bench 项目常见问题解决方案
1. 项目基础介绍和主要编程语言
SWE-bench 是一个用于评估大型语言模型在解决真实世界软件问题方面的基准测试。这个项目收集了来自 GitHub 的实际软件问题,并要求语言模型生成能够解决描述问题的补丁。该项目主要用于自然语言处理和机器学习领域,主要编程语言为 Python。
2. 新手常见问题及解决步骤
问题一:如何安装和设置 SWE-bench 项目?
解决步骤:
- 确保已安装 Docker。如果未安装,请按照 Docker 官方文档进行安装。
- 克隆项目到本地:
git clone git@github.com:princeton-nlp/SWE-bench.git
- 进入项目目录:
cd SWE-bench
- 使用 pip 安装项目依赖:
pip install -e .
问题二:如何测试安装是否成功?
解决步骤:
- 运行以下命令来测试安装:
python -m swebench.harness.run_evaluation --predictions_path gold --max_workers 1 --instance_ids sympy__sympy-20590 --run_id validate-gold
- 如果没有错误信息,表示安装成功。
问题三:如何运行项目?
解决步骤:
- 根据项目要求,你需要准备相应的数据集和模型。
- 使用以下命令运行项目:
python -m swebench.harness.run_evaluation --predictions_path <你的预测路径> --max_workers <工作线程数> --instance_ids <实例ID> --run_id <运行ID>
- 确保
<你的预测路径>
、<工作线程数>
、<实例ID>
和<运行ID>
都替换为实际值。
通过以上步骤,新手应该能够顺利安装和运行 SWE-bench 项目。如果在操作过程中遇到其他问题,请查阅项目文档或向项目维护者寻求帮助。