【论文解读】AGENTLESS:揭开LLM软件工程助手的神秘面纱,重塑软件工程自动化新基线

📜 文献卡

英文题目: Agentless: Demystifying LLM-based Software Engineering Agents;
作者: Chunqiu Steven Xia; Yinlin Deng; Soren Dunn; Lingming Zhang
DOI: 10.48550/arXiv.2407.01489
摘要翻译: 大型语言模型(LLM)的最新进展显著推进了软件开发任务的自动化,包括代码合成、程序修复和测试生成。最近,研究人员和行业从业者开发了各种自主LLM代理来执行端到端软件开发任务。这些代理配备了使用工具、运行命令、观察来自环境的反馈以及规划未来行动的能力。然而,这些基于代理的方法的复杂性,加上当前LLM的有限能力,引发了以下问题:我们真的必须使用复杂的自主软件代理吗?为了试图回答这个问题,我们构建了无代理——一种自动解决软件开发问题的无代理方法。与基于代理的方法的冗长和复杂的设置相比,Agentless采用了简单的本地化两阶段过程,然后进行修复,而不让LLM决定未来的行动或使用复杂的工具进行操作。我们在流行的SWE-bench Lite基准测试上的结果表明,令人惊讶的是,与所有现有的开源软件代理相比,简单的Agentless能够实现最高性能(27.33%)和最低成本(0.34美元)!此外,我们手动分类了SWE-bench Lite中的问题,并发现了精确的地面实况补丁或不足/误导性问题描述的问题。因此,我们通过排除此类有问题的问题来构建SWE-bench Lite-S,以执行更严格的评估和比较。我们的工作突出了当前在自主软件开发中被忽视的一种简单、可解释的技术的潜力。我们希望Agentless将有助于重置自治软件代理的基线、起点和视野,并激发未来朝着这一关键方向开展工作。
GitHub: https://github.com/OpenAutoCoder/Agentless

⚙️ 内容

这篇论文探讨了大型语言模型(LLM)在软件开发中的应用,并提出了一个名为AGENTLESS的简单解决方案。随着LLM技术的发展,研究人员和行业从业者已经开发出了各种自主的LLM代理程序,用于执行端到端的软件开发任务。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

yumuing blog

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值