高效内存注意力机制PyTorch项目教程

高效内存注意力机制PyTorch项目教程

memory-efficient-attention-pytorchImplementation of a memory efficient multi-head attention as proposed in the paper, "Self-attention Does Not Need O(n²) Memory"项目地址:https://gitcode.com/gh_mirrors/me/memory-efficient-attention-pytorch

项目介绍

memory-efficient-attention-pytorch 是一个开源项目,旨在实现一个内存高效的多头注意力机制,该机制在论文《Self-attention Does Not Need O(n²) Memory》中提出。该项目通过优化算法,显著减少了内存使用,同时保持了计算效率。

项目快速启动

安装库

首先,需要安装该项目库。可以使用以下命令进行安装:

# 对于 PyTorch
pip install memory-efficient-attention[torch]

计算注意力

安装完成后,可以使用以下代码示例来计算注意力:

import numpy as np
from memory_efficient_attention import efficient_dot_product_attention_pt

# 随机生成数据(批次维度不是必需的)
b = 8
query = np.random.rand(1, b, 128, 16, 8).astype("float32")
key = np.random.rand(1, b, 128, 16, 8).astype("float32")
value = np.random.rand(1, b, 128, 16, 8).astype("float32")

# 计算注意力
out = efficient_dot_product_attention_pt(query, key, value)

应用案例和最佳实践

自回归注意力

在自回归任务中,可以使用以下代码示例:

import torch
from memory_efficient_attention_pytorch import Attention

# 初始化注意力机制
attn = Attention(
    dim=512,
    dim_head=64,
    heads=8,
    memory_efficient=True,
    q_bucket_size=1024,
    k_bucket_size=2048
).cuda()

# 生成随机数据
x = torch.randn(1, 65536, 512).cuda()

# 计算注意力
out = attn(x)  # (1, 65536, 512)

交叉注意力

在交叉注意力任务中,可以使用以下代码示例:

import torch
from memory_efficient_attention_pytorch import Attention

# 初始化交叉注意力机制
cross_attn = Attention(
    dim=512,
    dim_head=64,
    heads=8,
    memory_efficient=True,
    q_bucket_size=1024,
    k_bucket_size=2048
).cuda()

# 生成随机数据
x = torch.randn(1, 65536, 512).cuda()
context = torch.randn(1, 65536, 512).cuda()
mask = torch.ones(1, 65536).bool().cuda()

# 计算交叉注意力
out = cross_attn(x, context=context, mask=mask)  # (1, 65536, 512)

典型生态项目

memory-efficient-attention-pytorch 项目可以与其他PyTorch生态项目结合使用,例如:

  • Hugging Face Transformers: 用于自然语言处理任务,可以集成内存高效的注意力机制以优化模型性能。
  • PyTorch Lightning: 用于简化训练循环和模型管理,可以与内存高效的注意力机制结合使用,提高训练效率。

通过这些生态项目的结合,可以进一步扩展和优化内存高效注意力机制的应用场景。

memory-efficient-attention-pytorchImplementation of a memory efficient multi-head attention as proposed in the paper, "Self-attention Does Not Need O(n²) Memory"项目地址:https://gitcode.com/gh_mirrors/me/memory-efficient-attention-pytorch

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

樊蒙毅

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值