DeepCAD 项目使用教程

DeepCAD 项目使用教程

项目地址:https://gitcode.com/gh_mirrors/de/DeepCAD

1. 项目目录结构及介绍

DeepCAD 项目的目录结构如下:

DeepCAD/
├── cadlib/
├── config/
├── dataset/
├── evaluation/
├── model/
├── trainer/
├── utils/
├── LICENSE
├── README.md
├── lgan.py
├── pc2cad.py
├── pc2cad_train.py
├── requirements.txt
├── teaser.png
├── test.py
└── train.py

目录介绍

  • cadlib/: 包含与 CAD 相关的库文件。
  • config/: 包含项目的配置文件。
  • dataset/: 用于存放数据集的目录。
  • evaluation/: 包含评估模型的相关代码。
  • model/: 包含模型的定义和实现。
  • trainer/: 包含训练模型的相关代码。
  • utils/: 包含各种实用工具和辅助函数。
  • LICENSE: 项目的开源许可证文件。
  • README.md: 项目的介绍和使用说明。
  • lgan.py: 生成对抗网络(GAN)的实现文件。
  • pc2cad.py: 点云到 CAD 模型的转换文件。
  • pc2cad_train.py: 训练点云到 CAD 模型的脚本。
  • requirements.txt: 项目依赖的 Python 包列表。
  • teaser.png: 项目的示意图或介绍图片。
  • test.py: 测试模型的脚本。
  • train.py: 训练模型的主脚本。

2. 项目的启动文件介绍

train.py

train.py 是 DeepCAD 项目的主要启动文件,用于训练模型。以下是该文件的主要功能:

  • 加载配置文件: 从 config/ 目录中加载配置参数。
  • 初始化模型: 初始化生成器和判别器模型。
  • 加载数据集: 从 dataset/ 目录中加载训练数据。
  • 训练模型: 执行模型的训练过程,包括前向传播、反向传播和参数更新。
  • 保存模型: 在训练过程中定期保存模型权重。

test.py

test.py 是用于测试已训练模型的脚本。以下是该文件的主要功能:

  • 加载模型: 从保存的模型权重文件中加载已训练的模型。
  • 加载测试数据: 从 dataset/ 目录中加载测试数据。
  • 评估模型: 对测试数据进行评估,计算模型的性能指标。

3. 项目的配置文件介绍

config/

config/ 目录包含项目的配置文件,用于定义训练和测试过程中的各种参数。以下是一些常见的配置文件及其作用:

  • config.json: 包含训练和测试过程中的全局配置参数,如学习率、批量大小、训练轮数等。
  • dataset_config.json: 包含数据集的配置参数,如数据路径、数据预处理方法等。
  • model_config.json: 包含模型的配置参数,如模型结构、层数、激活函数等。

配置文件示例

{
  "learning_rate": 0.001,
  "batch_size": 32,
  "num_epochs": 100,
  "data_path": "dataset/",
  "model_path": "model/",
  "save_interval": 10
}

以上配置文件定义了学习率、批量大小、训练轮数等参数,以及数据路径和模型保存路径。


通过以上教程,您可以了解 DeepCAD 项目的目录结构、启动文件和配置文件的使用方法。希望这些信息对您有所帮助!

DeepCAD code for our ICCV 2021 paper "DeepCAD: A Deep Generative Network for Computer-Aided Design Models" DeepCAD 项目地址: https://gitcode.com/gh_mirrors/de/DeepCAD

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

窦育培

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值