DeepCAD 项目使用教程
项目地址:https://gitcode.com/gh_mirrors/de/DeepCAD
1. 项目目录结构及介绍
DeepCAD 项目的目录结构如下:
DeepCAD/
├── cadlib/
├── config/
├── dataset/
├── evaluation/
├── model/
├── trainer/
├── utils/
├── LICENSE
├── README.md
├── lgan.py
├── pc2cad.py
├── pc2cad_train.py
├── requirements.txt
├── teaser.png
├── test.py
└── train.py
目录介绍
- cadlib/: 包含与 CAD 相关的库文件。
- config/: 包含项目的配置文件。
- dataset/: 用于存放数据集的目录。
- evaluation/: 包含评估模型的相关代码。
- model/: 包含模型的定义和实现。
- trainer/: 包含训练模型的相关代码。
- utils/: 包含各种实用工具和辅助函数。
- LICENSE: 项目的开源许可证文件。
- README.md: 项目的介绍和使用说明。
- lgan.py: 生成对抗网络(GAN)的实现文件。
- pc2cad.py: 点云到 CAD 模型的转换文件。
- pc2cad_train.py: 训练点云到 CAD 模型的脚本。
- requirements.txt: 项目依赖的 Python 包列表。
- teaser.png: 项目的示意图或介绍图片。
- test.py: 测试模型的脚本。
- train.py: 训练模型的主脚本。
2. 项目的启动文件介绍
train.py
train.py
是 DeepCAD 项目的主要启动文件,用于训练模型。以下是该文件的主要功能:
- 加载配置文件: 从
config/
目录中加载配置参数。 - 初始化模型: 初始化生成器和判别器模型。
- 加载数据集: 从
dataset/
目录中加载训练数据。 - 训练模型: 执行模型的训练过程,包括前向传播、反向传播和参数更新。
- 保存模型: 在训练过程中定期保存模型权重。
test.py
test.py
是用于测试已训练模型的脚本。以下是该文件的主要功能:
- 加载模型: 从保存的模型权重文件中加载已训练的模型。
- 加载测试数据: 从
dataset/
目录中加载测试数据。 - 评估模型: 对测试数据进行评估,计算模型的性能指标。
3. 项目的配置文件介绍
config/
config/
目录包含项目的配置文件,用于定义训练和测试过程中的各种参数。以下是一些常见的配置文件及其作用:
- config.json: 包含训练和测试过程中的全局配置参数,如学习率、批量大小、训练轮数等。
- dataset_config.json: 包含数据集的配置参数,如数据路径、数据预处理方法等。
- model_config.json: 包含模型的配置参数,如模型结构、层数、激活函数等。
配置文件示例
{
"learning_rate": 0.001,
"batch_size": 32,
"num_epochs": 100,
"data_path": "dataset/",
"model_path": "model/",
"save_interval": 10
}
以上配置文件定义了学习率、批量大小、训练轮数等参数,以及数据路径和模型保存路径。
通过以上教程,您可以了解 DeepCAD 项目的目录结构、启动文件和配置文件的使用方法。希望这些信息对您有所帮助!