Lagrangian Neural Networks 使用教程

Lagrangian Neural Networks 使用教程

lagrangian_nns Lagrangian Neural Networks lagrangian_nns 项目地址: https://gitcode.com/gh_mirrors/la/lagrangian_nns

1. 项目介绍

Lagrangian Neural Networks (LNNs) 是由 Miles Cranmer 等人开发的一个开源项目,旨在使用神经网络参数化任意拉格朗日函数。与传统的哈密顿神经网络(HNNs)不同,LNNs 不需要使用正则坐标,并且在计算广义动量较为困难的情况下表现良好,例如双摆问题。LNNs 特别适用于学习潜在表示的情况,这是 HNNs 难以处理的场景。此外,LNNs 不仅限于全同系统,还可以扩展到非全同系统,如一维波动方程。

该项目的主要贡献在于提出了一种全新的方法来学习拉格朗日函数,并展示了其在多个物理系统中的应用。LNNs 在 ICLR 2020 深度微分方程研讨会上被接受,并提供了详细的论文和代码实现。

2. 项目快速启动

2.1 环境准备

首先,确保你已经安装了以下依赖库:

  • Jax
  • NumPy
  • MoviePy
  • celluloid

你可以使用以下命令安装这些依赖:

pip install jax numpy moviepy celluloid

2.2 克隆项目

使用以下命令从 GitHub 克隆项目到本地:

git clone https://github.com/MilesCranmer/lagrangian_nns.git
cd lagrangian_nns

2.3 运行示例代码

项目中提供了多个示例代码,例如双摆问题的示例。你可以通过以下命令运行其中一个示例:

python notebooks/double_pendulum.py

该脚本将生成一个可视化的双摆运动动画,并保存为视频文件。

3. 应用案例和最佳实践

3.1 双摆问题

双摆问题是一个经典的非线性动力学问题,LNNs 能够很好地捕捉其运动规律。通过运行 notebooks/double_pendulum.py 脚本,你可以观察到双摆的运动轨迹,并验证 LNNs 的准确性。

3.2 一维波动方程

LNNs 还可以应用于一维波动方程的求解。通过运行 notebooks/wave_equation.py 脚本,你可以模拟一维波的传播,并观察 LNNs 在处理连续时间动力学问题中的表现。

3.3 最佳实践

  • 数据预处理:在使用 LNNs 之前,确保输入数据已经过适当的预处理,例如归一化处理。
  • 超参数调优:LNNs 的性能很大程度上依赖于超参数的选择。建议使用网格搜索或贝叶斯优化等方法来调优超参数。
  • 模型评估:在训练完成后,使用验证集对模型进行评估,确保其在未见数据上的泛化能力。

4. 典型生态项目

4.1 Jax

Jax 是一个用于高性能数值计算的库,特别适用于机器学习和科学计算。LNNs 项目大量使用了 Jax 来实现其核心算法。

4.2 NumPy

NumPy 是 Python 中用于科学计算的基础库,提供了多维数组对象和一系列操作这些数组的函数。LNNs 项目中使用了 NumPy 来进行数据处理和数值计算。

4.3 MoviePy 和 celluloid

MoviePy 和 celluloid 是用于视频处理和动画生成的库。LNNs 项目使用这些库来生成可视化的动画,帮助用户更好地理解模型的输出结果。

通过以上模块的介绍,你可以快速上手并深入了解 Lagrangian Neural Networks 项目。希望本教程对你有所帮助!

lagrangian_nns Lagrangian Neural Networks lagrangian_nns 项目地址: https://gitcode.com/gh_mirrors/la/lagrangian_nns

内容概要:本文将金属腐蚀现象比作游戏角色受到持续伤害(debuff),并采用浓度迁移和损伤方程来建模这一过程。文中首先介绍了浓度迁移的概念,将其比喻为游戏中使角色持续掉血的毒雾效果,并展示了如何利用Numpy矩阵存储浓度场以及通过卷积操作实现浓度扩散。接着引入了损伤方程,用于评估材料随时间累积的损伤程度,同时考虑到材料自身的抗性特性。作者还提供了完整的Python代码示例,演示了如何在一个二维网格环境中模拟24小时内金属表面发生的腐蚀变化,最终得到类似珊瑚状分形结构的腐蚀形态。此外,文章提到可以通过调整模型参数如腐蚀速率、材料抗性等,使得模拟更加贴近实际情况。 适合人群:对材料科学、物理化学感兴趣的科研工作者和技术爱好者,尤其是那些希望通过编程手段深入理解金属腐蚀机制的人群。 使用场景及目标:适用于希望借助数值模拟方法研究金属腐蚀行为的研究人员;可用于教学目的,帮助学生更好地掌握相关理论知识;也可作为工程项目前期评估工具,预测不同条件下金属构件可能遭受的腐蚀损害。 阅读建议:由于文中涉及较多数学公式和编程细节,建议读者具备一定的Python编程基础以及对线性代数有一定了解。对于想要进一步探索该领域的学者来说,可以尝试修改现有代码中的参数设置或者扩展模型维度,从而获得更丰富的研究成果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

霍曙柏

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值