LAGRANGIAN NEURAL NETWORKS拉格朗日神经网络

一、信息

题目:拉格朗日神经网络(LNNs)

作者:Miles Cranmer等

单位:Princeton University

发表: ICLR 2020 Deep Differential Equations Workshop

背景:神经网络模型在物理科学中的应用越来越多,但它们很难学习对称性。

要解决的问题:现有模型如HNN需要正则化坐标系,不能保持守恒定律。

解决方案:提出LNNs,在任意坐标系都可以建模,不限制能量函数的形式,可以应用到图结构和连续系统


二、内容

1.举例

       使用拉格朗日量描述双摆这样的动力学系统,左下角是观察到的轨迹(黑色),中间表示Baseline NN和Lagrangian NN

        baseline NN是一个多层感知器的结构,由于神经网络无法保持能量守恒,长时间运行会导致能量的损失(红色),lagrangian NN通过学习任意形式的拉格朗日量来更好的捕捉物理定律的本质,从而实现能量守恒,轨迹更加稳定(蓝色)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值