一、信息
题目:拉格朗日神经网络(LNNs)
作者:Miles Cranmer等
单位:Princeton University
发表: ICLR 2020 Deep Differential Equations Workshop
背景:神经网络模型在物理科学中的应用越来越多,但它们很难学习对称性。
要解决的问题:现有模型如HNN需要正则化坐标系,不能保持守恒定律。
解决方案:提出LNNs,在任意坐标系都可以建模,不限制能量函数的形式,可以应用到图结构和连续系统
二、内容
1.举例
使用拉格朗日量描述双摆这样的动力学系统,左下角是观察到的轨迹(黑色),中间表示Baseline NN和Lagrangian NN
baseline NN是一个多层感知器的结构,由于神经网络无法保持能量守恒,长时间运行会导致能量的损失(红色),lagrangian NN通过学习任意形式的拉格朗日量来更好的捕捉物理定律的本质,从而实现能量守恒,轨迹更加稳定(蓝色)