干货!神经辛形式:学习一般坐标系上的哈密尔顿方程

点击蓝字

94e0c7938e99bd9dde6410a1dee53338.png

关注我们

AI TIME欢迎每一位AI爱好者的加入!

afb090842890dc19a25cbfbbc761f2c2.gif

近年来,人们对学习哈密尔顿方程的方法进行了大量研究。尽管这些方法非常有前途,但常用的哈密尔顿方程的表示方法使用广义动量,而广义动量一般是未知的。

因此,训练数据必须用这个未知的坐标系来表示,这给将模型应用于真实数据带来了困难。同时,哈密尔顿方程也有一个无坐标的表达方式,它是通过使用辛-2形式来表达的。

在这项研究中,我们提出了一个利用神经网络从数据中学习辛形式的模型,从而提供了一种从一般坐标系表示的数据中学习哈密尔顿方程的方法,这种方法不限于广义坐标和广义动量。

因此,所提出的方法不仅能够对哈密尔顿和拉格朗日形式的目标方程进行建模,而且还能够提取隐藏在数据中的未知哈密尔顿结构。例如,许多多项式常微分方程,如Lotka-Volterra方程,已知其存在非微观的哈密尔顿结构,我们的数值实验表明,这种结构当然可以从数据中学习。

从技术上讲,每个辛2-形式都与一个偏斜对称矩阵相关,但并非所有的偏斜对称矩阵都定义了辛2-形式。在所提出的方法中,利用辛2-形式是某些微分1-形式的外导数派生,我们用神经网络对微分1-形式进行建模,从而提高了学习的效率。

本次研究的主题是神经辛形式模型,我们将用这个模型学习一般坐标系下的哈密尔顿方程。

本期AI TIME PhD直播间,我们邀请到神户大学系统信息研究科计算科学专业博士生——陈钰涵,为我们带来报告分享《神经辛形式:学习一般坐标系上的哈密尔顿方程》。

59fefa75ce0ee0cd60c24222e146b788.png

陈钰涵:

神户大学系统信息研究科计算科学专业的在读一年级博士生。现导师是谷口隆晴教授。于2018年获得北京信息科技大学应用统计学学士学位。博士期间的研究方向主要为深度学习与几何动力学和物理模拟技术的结合。该论文是陈钰涵作为第一作者在NeurIPS发布的文章,且被采用为spotlight。其他相关论文发表在NeurIPS,AAAI等。

1

Deep learning for physical simulation

深度学习在物理学模拟领域

Learn dynamical system 学习动力系统

  • 物理学模拟具有广泛的应用

  • 数据驱动方法是一种常用的加速仿真的方法

  • 物理现象可用基于物理定律的微分方程表示

  • 遵守物理定律保证了结果的可靠性

f61f9248af50efac29959225c5528144.png

在计算机上对这些现象进行建模和模拟的时候,最简单的方式就是用神经网络从数据中学习代表运动方程的常微分方程右边部分,也就是我们常说的Neural ODE模型。

但由于神经网络的通用性,能量守恒等物理规律在这个模型中可能是不成立的。为了不使物理特性消失,因此把这些特性引入研究模型之中。

近年来,学者们对这些模型也进行了研究,比如Euler-Lagrange equation and Hamilton equation。

学习物理现象,同时保留物理定律

Lagrangian Neural Network (LNN)

用来学习拉格朗日动力学运动方程的模型叫做拉格朗日神经网络。

  • Lagrangian system (the Euler-Lagrange equation)在这个网络中,一个神经网络被用来对拉格朗日L进行建模,并从中推导出运动方程。在拉格朗日力学中,方程是用状态变量及其时间导数来描述的。这也使得我们学习所需要的数据较为容易来准备。

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值