MP-DQN 开源项目使用教程
MP-DQN项目地址:https://gitcode.com/gh_mirrors/mp/MP-DQN
1. 项目的目录结构及介绍
MP-DQN 项目的目录结构如下:
MP-DQN/
├── agents/
│ ├── common/
│ └── ...
├── README.md
├── LICENSE.md
├── run_goal_paddpg.py
├── run_goal_pdqn.py
├── run_goal_qpamdp.py
├── run_platform_paddpg.py
├── run_platform_pdqn.py
├── run_platform_qpamdp.py
├── run_soccer_paddpg.py
├── run_soccer_pdqn.py
└── run_soccer_qpamdp.py
目录结构介绍
agents/
: 包含智能体(agent)的实现代码,其中common/
目录包含一些通用模块。README.md
: 项目说明文档。LICENSE.md
: 项目许可证文件。run_*.py
: 一系列启动文件,用于在不同的环境中运行不同的算法。
2. 项目的启动文件介绍
项目中的启动文件主要用于在不同的环境中运行不同的强化学习算法。以下是一些主要的启动文件:
run_goal_paddpg.py
: 用于在目标环境中运行 P-ADDPG 算法。run_goal_pdqn.py
: 用于在目标环境中运行 P-DQN 算法。run_goal_qpamdp.py
: 用于在目标环境中运行 Q-PAMDP 算法。run_platform_paddpg.py
: 用于在平台环境中运行 P-ADDPG 算法。run_platform_pdqn.py
: 用于在平台环境中运行 P-DQN 算法。run_platform_qpamdp.py
: 用于在平台环境中运行 Q-PAMDP 算法。run_soccer_paddpg.py
: 用于在足球环境中运行 P-ADDPG 算法。run_soccer_pdqn.py
: 用于在足球环境中运行 P-DQN 算法。run_soccer_qpamdp.py
: 用于在足球环境中运行 Q-PAMDP 算法。
3. 项目的配置文件介绍
MP-DQN 项目没有明确的配置文件,但可以通过命令行参数或环境变量来配置运行时的参数。例如,可以通过以下方式运行 run_goal_pdqn.py
文件:
python run_goal_pdqn.py --env=Goal --algorithm=PDQN --num_episodes=1000
其中,--env
参数指定环境,--algorithm
参数指定算法,--num_episodes
参数指定运行的回合数。
通过这种方式,可以灵活地配置和运行不同的算法和环境。