RSPrompter 使用与启动教程
RSPrompter 项目地址: https://gitcode.com/gh_mirrors/rs/RSPrompter
1. 项目介绍
RSPrompter 是一个基于视觉基础模型的学习项目,旨在对遥感图像进行实例分割。该项目基于 MMDetection 项目进行开发,提供了一个高度一致性的 API 接口和使用方法。RSPrompter 支持多种训练和测试数据集,并集成了 SAM-seg、SAM-det 等模型。
2. 项目快速启动
环境安装
首先,确保您的系统中安装了以下依赖:
- Python 3.7+,推荐 3.10
- PyTorch 2.0 或更高版本,推荐 2.1
- CUDA 11.7 或更高版本,推荐 12.1
- MMCV 2.0 或更高版本,推荐 2.1
使用 Miniconda 创建虚拟环境并安装相关依赖:
# 创建名为 rsprompter 的虚拟环境并激活
conda create -n rsprompter python=3.10 -y
conda activate rsprompter
# 安装 PyTorch 2.1.x
pip install torch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 --index-url https://download.pytorch.org/whl/cu121
# 安装 MMCV 2.1.x
pip install -U openmim
mim install mmcv==2.1.0
# 安装其他依赖
pip install -U transformers==4.38.1 wandb==0.16.3 einops pycocotools shapely scipy terminaltables importlib peft==0.8.2 mat4py==0.6.0 mpi4py
# 可选:安装 DeepSpeed
# pip install deepspeed==0.13.4
克隆项目仓库
# 克隆 RSPrompter 仓库
git clone git@github.com:KyanChen/RSPrompter.git
cd RSPrompter
3. 应用案例和最佳实践
数据集准备
RSPrompter 支持多种遥感数据集,如 WHU Building Dataset、NWPU VHR-10 Dataset 和 SSDD Dataset。数据集需要按照以下目录结构进行组织:
${DATASET_ROOT} # 数据集根目录
├── annotations
│ ├── train.json
│ ├── val.json
│ └── test.json
└── images
├── train
├── val
└── test
模型训练
在 configs/rsprompter
目录下,提供了基于 SAM 的模型配置文件。以下是一个简单的训练命令示例:
# 使用配置文件启动训练
python train.py ${CONFIG_FILE} --work-dir ${OUTPUT_DIR}
替换 ${CONFIG_FILE}
为实际的配置文件路径,${OUTPUT_DIR}
为训练输出目录。
4. 典型生态项目
RSPrompter 作为遥感图像实例分割的开源项目,是 MMDetection 生态的一部分。其他类似的生态项目包括但不限于:
- MMDetection:一个开源的检测工具箱,支持多种检测和分割任务。
- MMSegmentation:专注于图像分割的开源项目。
- MMDeploy:用于模型部署的工具包,支持多种硬件和平台。
以上是 RSPrompter 的使用和快速启动教程,希望对您有所帮助。
RSPrompter 项目地址: https://gitcode.com/gh_mirrors/rs/RSPrompter