Reinforcement-Learning-Cheat-Sheet 项目使用教程

Reinforcement-Learning-Cheat-Sheet 项目使用教程

Reinforcement-Learning-Cheat-Sheet Reinforcement Learning Cheat Sheet Reinforcement-Learning-Cheat-Sheet 项目地址: https://gitcode.com/gh_mirrors/re/Reinforcement-Learning-Cheat-Sheet

1. 项目目录结构及介绍

Reinforcement-Learning-Cheat-Sheet/
├── README.md
├── rl_cheatsheet.pdf
├── rl_cheatsheet.tex
└── images/
    └── ...
  • README.md: 项目的基本介绍文件,包含项目的概述、使用方法和贡献指南。
  • rl_cheatsheet.pdf: 强化学习速查表的PDF版本,包含所有基本公式和算法。
  • rl_cheatsheet.tex: 速查表的LaTeX源文件,用于生成PDF文件。
  • images/: 包含速查表中使用的所有图像文件。

2. 项目启动文件介绍

项目的主要启动文件是 rl_cheatsheet.tex,这是一个LaTeX源文件,用于生成PDF版本的强化学习速查表。要启动项目并生成PDF文件,您需要:

  1. 安装LaTeX编译器(如TeX Live或MiKTeX)。
  2. 使用LaTeX编辑器(如TeXstudio或Overleaf)打开 rl_cheatsheet.tex 文件。
  3. 编译 rl_cheatsheet.tex 文件以生成 rl_cheatsheet.pdf

3. 项目的配置文件介绍

项目中没有专门的配置文件,所有配置和内容都在 rl_cheatsheet.tex 文件中定义。您可以通过编辑 rl_cheatsheet.tex 文件来修改速查表的内容、格式和布局。

例如,您可以在 rl_cheatsheet.tex 文件中找到以下部分来修改速查表的内容:

\section{基本公式}
\begin{itemize}
    \item 状态值函数:$V(s) = \mathbb{E}[G_t | S_t = s]$
    \item 动作值函数:$Q(s, a) = \mathbb{E}[G_t | S_t = s, A_t = a]$
    \item 贝尔曼方程:$V(s) = \sum_{a} \pi(a|s) \sum_{s'} P_{ss'}^a [R_{ss'}^a + \gamma V(s')]$
\end{itemize}

通过修改这些内容,您可以自定义速查表以满足您的需求。

Reinforcement-Learning-Cheat-Sheet Reinforcement Learning Cheat Sheet Reinforcement-Learning-Cheat-Sheet 项目地址: https://gitcode.com/gh_mirrors/re/Reinforcement-Learning-Cheat-Sheet

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

史霁蔷Primrose

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值