单域泛化对象检测:Single-DGOD项目指南
Single-DGOD 项目地址: https://gitcode.com/gh_mirrors/si/Single-DGOD
项目概述
本指南旨在详细介绍由Aming Wu开发并托管在GitHub上的单域泛化对象检测(Single-Domain Generalized Object Detection,简称Single-DGOD)项目。该项目主要聚焦于城市场景中通过循环解纠缠自蒸馏方法实现的单域泛化物体检测技术,提出的方法在CVPR 2022上发表。
1. 目录结构及介绍
项目遵循了典型的深度学习项目结构,其主要组成部分包括源代码、配置文件、模型以及必要的脚本等。下面是关键目录的概览:
- cfgs:存放网络配置文件,定义了模型架构和训练细节。
- lib:核心库文件夹,包含了数据处理、模型定义、损失函数等相关代码。
- LICENSE:项目的授权协议文件,采用MIT许可。
- README.md:项目说明文档,提供了快速入门指导和基本项目信息。
- Single-DGOD.png:项目图标或示意图。
- _init_paths.py:初始化路径,用于确保程序能够正确找到项目内部的所有资源。
- demo.py: 提供了如何使用训练好的模型进行预测的示范脚本。
- requirements.txt: 列出了项目运行所需的第三方库及其版本。
- test_net_fpn.py: 用于评估或测试模型的脚本。
- trainval_net_fpn.py: 训练和验证模型的主要脚本,这里虽然提到了FPN(Feature Pyramid Networks),但实际上项目论文未使用FPN,这可能是实现细节的变体或后续工作。
2. 项目的启动文件介绍
训练与验证
- trainval_net_fpn.py 这个脚本是训练和验证你的模型的关键。它接收多个命令行参数,如数据集配置(
--dataset dc_fpn
)、所用网络类型(--net res101
)、训练轮数(--epochs 20
)等,利用CUDA加速(--cuda
)进行训练。
测试
- test_net_fpn.py 使用这个脚本来评估模型性能。你需要指定检查点(
--checkpoint
)、会话(--checksession
)等参数来加载预先训练的模型,并且可以在特定的数据集上进行测试。
示例演示
- demo.py 对于希望立即体验模型效果的用户,这个脚本允许你使用预训练模型对新图像进行对象检测。
3. 项目的配置文件介绍
- 配置文件通常位于
cfgs
目录下。 配置文件是设置模型架构、训练参数、数据加载器等核心组件的关键。例如,你可能在这里定义学习率(lr
)、批次大小(bs
)、权重衰减(weight_decay
)等重要训练参数。对于Single-DGOD项目,这些文件详细描述了模型的构建块,允许用户微调以适应不同的实验需求。
每份配置文件都是Python脚本格式,通过变量赋值的方式来配置各项参数。理解这些配置是定制实验和调整性能的基础。
以上就是关于Single-DGOD项目的基本指引,涵盖了其目录结构、启动文件的使用以及配置文件的重要性。开发者可以根据项目的需求,结合上述信息来快速上手并深入研究。
Single-DGOD 项目地址: https://gitcode.com/gh_mirrors/si/Single-DGOD