Depth Any Camera:零样本度量深度估计的开创性框架

Depth Any Camera:零样本度量深度估计的开创性框架

depth_any_camera Depth Any Camera: Zero-Shot Metric Depth Estimation from Any Camera depth_any_camera 项目地址: https://gitcode.com/gh_mirrors/de/depth_any_camera

在计算机视觉领域,深度估计是一项关键任务,它可以帮助算法理解场景的三维结构。然而,不同类型的摄像头(如鱼眼或全景摄像头)给深度估计带来了挑战。今天,我们要介绍一个突破性的开源项目——Depth Any Camera(DAC),它是一个零样本度量深度估计框架,能够有效扩展到任何类型的摄像头,无论视场范围如何变化。

项目介绍

Depth Any Camera(DAC)是一个旨在解决不同摄像头类型深度估计问题的框架。它能够将仅在透视图像上训练的模型无缝地扩展到鱼眼和360度摄像头,无需特定训练数据。这一创新技术由Yuliang Guo等研究人员开发,并在CVPR 2025上发表。

项目技术分析

DAC框架的核心是零样本学习,它允许模型在没有特定训练数据的情况下处理新的摄像头类型。项目采用了基于几何的训练框架,可以适应任何网络架构,并且可以扩展到其他三维感知任务。这一技术不仅提高了模型的泛化能力,还大大减少了数据收集和训练的时间成本。

项目及技术应用场景

DAC的应用场景广泛,包括但不限于:

  1. 自动驾驶:在自动驾驶系统中,不同类型的摄像头需要准确估计周围环境的深度信息,DAC能够处理各种摄像头数据,提高系统的感知能力。
  2. 机器人导航:机器人需要在复杂环境中进行导航,准确地深度估计可以帮助它们更好地理解环境,避免碰撞。
  3. 虚拟现实和增强现实:在VR/AR应用中,用户需要一个真实感更强的体验,DAC可以提供更准确的深度信息,增强沉浸感。

项目特点

Depth Any Camera具有以下显著特点:

  1. 零样本度量深度估计:DAC能够在没有特定训练数据的情况下,对鱼眼和360度图像进行深度估计,性能远超现有技术水平。
  2. 几何训练框架:该框架适应性强,可以应用于任何网络架构,且易于扩展。
  3. 高效的数据利用:DAC最大化了现有3D数据集的价值,无需为特定摄像头类型收集新数据。

以下是DAC与现有技术的性能对比:

| 方法 | 训练数据大小 | Matterport3D (360) | Pano3D-GV2 (360) | ScanNet++ (鱼眼) | KITTI360 (鱼眼) | | --- | ---: | ---: | ---: | ---: | ---: | | UniDepth-VitL | 3M | 0.7648 | 0.2576 | 0.7892 | 0.2469 | | Metric3D-v2-VitL | 16M | 0.2924 | 0.4381 | 0.3070 | 0.4040 | | Ours-Resnet101 | 670K-indoor / 130K-outdoor | 0.156 | 0.7727 | 0.1387 | 0.8115 | | Ours-SwinL | 670K-indoor / 130K-outdoor | 0.1789 | 0.7231 | 0.1836 | 0.7287 |

DAC在各个指标上都表现出显著优势,特别是在AbsRel和$\delta_1$指标上,其性能远超现有技术水平。

在深度估计领域,Depth Any Camera无疑是一个值得关注的突破性技术。它不仅提高了深度估计的准确性和效率,还极大地简化了数据处理和模型训练的复杂性。对于研究人员和开发者来说,这是一个非常有价值的开源项目。我们强烈推荐有兴趣的用户尝试并采用这一框架,以提升他们的项目性能。

depth_any_camera Depth Any Camera: Zero-Shot Metric Depth Estimation from Any Camera depth_any_camera 项目地址: https://gitcode.com/gh_mirrors/de/depth_any_camera

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

苗韵列Ivan

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值