自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(591)
  • 收藏
  • 关注

原创 KW-DCW!结构光3D相机!Linux C++版本SDK超好用教程!

这使得它成为一款强大的3D相机,特别适用于3D扫描、工业3D缺陷检测,并可与机器人在工业无序抓取、上下料等场景下无缝配合使用。的KW-DCW 3D相机为例,介绍在Ubuntu系统下使用C++ SDK采集数据的方法,对于其他型号的相机,KW-SCW、KW-LCW用法相同。我们对金属零配件进行了高动态下的成像测试,KW相机在高反光场景下表现非常出色,点云成像效果令人惊艳,展现了其卓越的成像性能。在bin文件目录下运行,打开gui。苏州三迪斯维智能科技有限公司。在C++文件夹目录下运行终端。

2025-06-05 11:50:08 229

原创 太酷啦!Fast-Livo2在HandBot-S1中运行成功!效果喜人!

大家好,我是jack,近期由于工作需要,公司采购了一套3D视觉工坊的,并在技术老师的指导下,编译并运行成功Fast-Livo2。HandBot-S1手持三维扫描仪。

2025-05-28 14:26:18 595

原创 一骑绝尘!KW系列3D相机!精度高、体积小、价格低、SDK超好用、稳定性强!

苏州三迪斯维智能科技有限公司的KW系列3D相机采用主动结构光技术,拍摄速度快、成像精细、方案成熟稳定,针对不同应用场景物体可输出高质量点云数据图,精度高、速度快、环境自适应性强,适用于工件上下料、拆码垛、机器人视觉引导等多种应用场景。原文一骑绝尘!KW系列3D相机!精度高、体积小、价格低、SDK超好用、稳定性强!添加图片注释,不超过 140 字(可选)

2025-05-28 14:22:44 178 1

原创 在CloudCompare下如何将PLY点云数据转成深度图显示效果

调整properties中dispaly range的数值,点云本身深度区间最佳。下图是用苏州三迪斯维智能科技有限公司的。重建的硬币,本教程将用此素材做演示。将点云的颜色按照深度范围筛选后显示。演示素材已放至知识星球,需要自取。一 根据坐标系对点云着色。来源:计算机视觉工坊。

2025-05-20 19:02:53 280

原创 KW-DCW!3D相机Python版本SDK使用教程详解

这使得它成为一款强大的3D相机,特别适用于3D扫描、工业3D缺陷检测,并可与机器人在工业无序抓取、上下料等场景下无缝配合使用。本文以KW-DCW 3D相机为例,介绍如何使用Python SDK采集数据的两种方法,对于其他型号的相机,KW-SCW、KW-LCW用法相同。我们对金属零配件进行了高动态下的成像测试,KW相机在高反光场景下表现非常出色,点云成像效果令人惊艳,展现了其卓越的成像性能。1.2.1 安装KW-2.2-cp310-cp310-win_amd64.whl库。三 Python SDK使用方法。

2025-05-17 12:08:50 695

原创 一文搞懂ROS2 Nav2:概念解析和源码编译安装的踩坑总结

当我们执行到叶子节点时,也就是具体最终执行的动作,比如ComputePathToPose节点,就是规划机器人起点到终点的全局路径。PipelineSequence:也是行为树控制节点,可以有多个孩子,这里假设由两个孩子,左边的孩子是child1,右边的孩子是child2,如果child1执行成功,则会执行child2,如果child2返回RUNNING,则又会去执行child1,主要特点是在某个子节点返回 RUNNING 时,会重新触发之前的所有子节点。根据所选的命名法和算法,该路径也可以称为路线。

2025-05-13 12:09:19 1208

原创 windows下安装Python软件详细教程

Python安装完毕后,不但可以在Windows命令行(cmd) 使用交互模式,还可以使用安装程序自带的交互式开发工具IDLE。新增20多门3D视觉系统课程、入门环境配置教程、多场顶会直播、顶会论文最新解读、3D视觉算法源码、求职招聘。新增20多门3D视觉系统课程、入门环境配置教程、多场顶会直播、顶会论文最新解读、3D视觉算法源码、求职招聘。以上,由此可验证Python已经成功安装在windows电脑上。想要入门3D视觉、做项目、搞科研,想要入门3D视觉、做项目、搞科研,, 选择命令行提示符,并点击“

2025-05-12 19:12:05 364

原创 小白入门Kalibr标定实战

标定完毕,则会在相应的文件夹下产生一个pdf文件件,里面有标定的结果和重投影误差(reprojection errors)!本人3D视觉小白,目前研一,最近正在学习kalibr标定,正好课题组采购了一台3D视觉工坊出品的。综上,通过上述方法标定流程与HandBot-S1里的基本一致,由此验证标定方法应该是没问题的。标定板位置出现在相机视野的各个位置,采集中避免了快速移动或者抖动相机,防止产生模糊图像。根据客服推荐的标定板图纸,我打印了一份雪弗板,平面度肉眼看着还行。想要入门3D视觉、做项目、搞科研,

2025-05-04 20:31:12 903

原创 SIGGRAPH‘25!Drag Your Gaussian: 首个Scene-leve! 3DGS拖拽编辑方法

传统的3D表示方式,比如网格、体素、点云等,虽然奠定了计算机图形的基础,但它们或过于笨重,或过于稀疏,很难兼顾高质量渲染与高效率操作。用户只需通过简单的控制点对和 3D掩码,即可实现高质量、可控、跨视角一致的3D几何编辑。相较于传统的文本驱动方法,DYG通过“控制点+3D掩码”的方式,结合隐式三平面表示与高斯场优化,使得用户可以实现更精细、更稳定的几何编辑。编辑效率的提升:当前的两阶段优化过程仍存在一定的时间开销,未来我们将尝试引入更高效的表示结构或增量式优化策略,朝着近实时编辑的方向推进。

2025-05-02 22:46:46 922

原创 SIGGRAPH‘25!Drag Your Gaussian: 首个Scene-leve! 3DGS拖拽编辑方法

传统的3D表示方式,比如网格、体素、点云等,虽然奠定了计算机图形的基础,但它们或过于笨重,或过于稀疏,很难兼顾高质量渲染与高效率操作。用户只需通过简单的控制点对和 3D掩码,即可实现高质量、可控、跨视角一致的3D几何编辑。相较于传统的文本驱动方法,DYG通过“控制点+3D掩码”的方式,结合隐式三平面表示与高斯场优化,使得用户可以实现更精细、更稳定的几何编辑。编辑效率的提升:当前的两阶段优化过程仍存在一定的时间开销,未来我们将尝试引入更高效的表示结构或增量式优化策略,朝着近实时编辑的方向推进。

2025-05-02 22:46:46 552

原创 SIGGRAPH‘25!Drag Your Gaussian: 首个Scene-leve! 3DGS拖拽编辑方法

传统的3D表示方式,比如网格、体素、点云等,虽然奠定了计算机图形的基础,但它们或过于笨重,或过于稀疏,很难兼顾高质量渲染与高效率操作。用户只需通过简单的控制点对和 3D掩码,即可实现高质量、可控、跨视角一致的3D几何编辑。相较于传统的文本驱动方法,DYG通过“控制点+3D掩码”的方式,结合隐式三平面表示与高斯场优化,使得用户可以实现更精细、更稳定的几何编辑。编辑效率的提升:当前的两阶段优化过程仍存在一定的时间开销,未来我们将尝试引入更高效的表示结构或增量式优化策略,朝着近实时编辑的方向推进。

2025-05-02 22:46:46 563

原创 SIGGRAPH‘25!Drag Your Gaussian: 首个Scene-leve! 3DGS拖拽编辑方法

传统的3D表示方式,比如网格、体素、点云等,虽然奠定了计算机图形的基础,但它们或过于笨重,或过于稀疏,很难兼顾高质量渲染与高效率操作。用户只需通过简单的控制点对和 3D掩码,即可实现高质量、可控、跨视角一致的3D几何编辑。相较于传统的文本驱动方法,DYG通过“控制点+3D掩码”的方式,结合隐式三平面表示与高斯场优化,使得用户可以实现更精细、更稳定的几何编辑。编辑效率的提升:当前的两阶段优化过程仍存在一定的时间开销,未来我们将尝试引入更高效的表示结构或增量式优化策略,朝着近实时编辑的方向推进。

2025-05-02 22:46:46 539

原创 SIGGRAPH‘25!Drag Your Gaussian: 首个Scene-leve! 3DGS拖拽编辑方法

传统的3D表示方式,比如网格、体素、点云等,虽然奠定了计算机图形的基础,但它们或过于笨重,或过于稀疏,很难兼顾高质量渲染与高效率操作。用户只需通过简单的控制点对和 3D掩码,即可实现高质量、可控、跨视角一致的3D几何编辑。相较于传统的文本驱动方法,DYG通过“控制点+3D掩码”的方式,结合隐式三平面表示与高斯场优化,使得用户可以实现更精细、更稳定的几何编辑。编辑效率的提升:当前的两阶段优化过程仍存在一定的时间开销,未来我们将尝试引入更高效的表示结构或增量式优化策略,朝着近实时编辑的方向推进。

2025-05-02 22:46:46 812

原创 SIGGRAPH‘25!Drag Your Gaussian: 首个Scene-leve! 3DGS拖拽编辑方法

传统的3D表示方式,比如网格、体素、点云等,虽然奠定了计算机图形的基础,但它们或过于笨重,或过于稀疏,很难兼顾高质量渲染与高效率操作。用户只需通过简单的控制点对和 3D掩码,即可实现高质量、可控、跨视角一致的3D几何编辑。相较于传统的文本驱动方法,DYG通过“控制点+3D掩码”的方式,结合隐式三平面表示与高斯场优化,使得用户可以实现更精细、更稳定的几何编辑。编辑效率的提升:当前的两阶段优化过程仍存在一定的时间开销,未来我们将尝试引入更高效的表示结构或增量式优化策略,朝着近实时编辑的方向推进。

2025-05-02 22:46:46 669

原创 SIGGRAPH‘25!Drag Your Gaussian: 首个Scene-leve! 3DGS拖拽编辑方法

传统的3D表示方式,比如网格、体素、点云等,虽然奠定了计算机图形的基础,但它们或过于笨重,或过于稀疏,很难兼顾高质量渲染与高效率操作。用户只需通过简单的控制点对和 3D掩码,即可实现高质量、可控、跨视角一致的3D几何编辑。相较于传统的文本驱动方法,DYG通过“控制点+3D掩码”的方式,结合隐式三平面表示与高斯场优化,使得用户可以实现更精细、更稳定的几何编辑。编辑效率的提升:当前的两阶段优化过程仍存在一定的时间开销,未来我们将尝试引入更高效的表示结构或增量式优化策略,朝着近实时编辑的方向推进。

2025-05-02 22:46:46 732

原创 SIGGRAPH‘25!Drag Your Gaussian: 首个Scene-leve! 3DGS拖拽编辑方法

传统的3D表示方式,比如网格、体素、点云等,虽然奠定了计算机图形的基础,但它们或过于笨重,或过于稀疏,很难兼顾高质量渲染与高效率操作。用户只需通过简单的控制点对和 3D掩码,即可实现高质量、可控、跨视角一致的3D几何编辑。相较于传统的文本驱动方法,DYG通过“控制点+3D掩码”的方式,结合隐式三平面表示与高斯场优化,使得用户可以实现更精细、更稳定的几何编辑。编辑效率的提升:当前的两阶段优化过程仍存在一定的时间开销,未来我们将尝试引入更高效的表示结构或增量式优化策略,朝着近实时编辑的方向推进。

2025-05-02 22:46:46 911

原创 SIGGRAPH‘25!Drag Your Gaussian: 首个Scene-leve! 3DGS拖拽编辑方法

传统的3D表示方式,比如网格、体素、点云等,虽然奠定了计算机图形的基础,但它们或过于笨重,或过于稀疏,很难兼顾高质量渲染与高效率操作。用户只需通过简单的控制点对和 3D掩码,即可实现高质量、可控、跨视角一致的3D几何编辑。相较于传统的文本驱动方法,DYG通过“控制点+3D掩码”的方式,结合隐式三平面表示与高斯场优化,使得用户可以实现更精细、更稳定的几何编辑。编辑效率的提升:当前的两阶段优化过程仍存在一定的时间开销,未来我们将尝试引入更高效的表示结构或增量式优化策略,朝着近实时编辑的方向推进。

2025-05-02 22:46:46 585

原创 SIGGRAPH‘25!Drag Your Gaussian: 首个Scene-leve! 3DGS拖拽编辑方法

传统的3D表示方式,比如网格、体素、点云等,虽然奠定了计算机图形的基础,但它们或过于笨重,或过于稀疏,很难兼顾高质量渲染与高效率操作。用户只需通过简单的控制点对和 3D掩码,即可实现高质量、可控、跨视角一致的3D几何编辑。相较于传统的文本驱动方法,DYG通过“控制点+3D掩码”的方式,结合隐式三平面表示与高斯场优化,使得用户可以实现更精细、更稳定的几何编辑。编辑效率的提升:当前的两阶段优化过程仍存在一定的时间开销,未来我们将尝试引入更高效的表示结构或增量式优化策略,朝着近实时编辑的方向推进。

2025-05-02 22:46:46 822

原创 SIGGRAPH‘25!Drag Your Gaussian: 首个Scene-leve! 3DGS拖拽编辑方法

传统的3D表示方式,比如网格、体素、点云等,虽然奠定了计算机图形的基础,但它们或过于笨重,或过于稀疏,很难兼顾高质量渲染与高效率操作。用户只需通过简单的控制点对和 3D掩码,即可实现高质量、可控、跨视角一致的3D几何编辑。相较于传统的文本驱动方法,DYG通过“控制点+3D掩码”的方式,结合隐式三平面表示与高斯场优化,使得用户可以实现更精细、更稳定的几何编辑。编辑效率的提升:当前的两阶段优化过程仍存在一定的时间开销,未来我们将尝试引入更高效的表示结构或增量式优化策略,朝着近实时编辑的方向推进。

2025-05-02 22:46:46 711

原创 SLAM和基于Learning的AI技术的核心区别是什么?

添加小助理:cv3d001,备注:方向+单位+昵称,拉你入群。3D视觉工坊很荣幸诚邀到了香港科技大学袁子康博士来分享他的工作。欢迎加入3D视觉从入门到精通知识星球,一起学习进步!3D视觉学习路线:www.3dcver.com。「3D视觉从入门到精通」知识星球。入门3D视觉、做项目、搞科研,3D视觉从入门到精通知识星球。3D视觉系列视频近20+门。论文辅导&招募辅导老师。求职招聘&面经&面试题。

2025-04-04 00:01:38 268

原创 一文带你了解工业相机和镜头参数和选型

点击下方卡片,关注「计算机视觉工坊」公众号选择星标,干货第一时间送达作者:小柠檬 | 审核:小凡 | 编辑:计算机视觉工坊添加小助理:cv3d001,备注:方向+学校/公司+昵称,拉你入群。文末附3D视觉行业细分群。扫描下方二维码,加入「3D视觉从入门到精通」知识星球(点开有惊喜),星球内凝聚了众多3D视觉实战问题,以及各个模块的学习资料:近20门秘制视频课程、最新顶会论文、计算机视觉书籍、优...

2025-02-22 00:02:08 1694

原创 简单但有效!精度暴涨98%!华科开源MINIMA:通用图像匹配!兼容稀疏、半稠密、稠密!

本文提出了一个名为MINIMA的统一匹配框架,适用于任何跨模态情况。这是通过使用有效的数据引擎填补数据鸿沟来实现的,该引擎可以自由地将廉价的RGB数据扩展到大型多模态数据。构建的MD-syn数据集包含了丰富的场景和精确的匹配标签,并支持任何先进匹配模型的训练,显著提高了在未见跨模态情况下的跨模态性能和零样本能力。对更多实验结果和文章细节感兴趣的读者,可以阅读一下论文原文~

2025-02-11 18:03:42 885

原创 超强泛化性!北大&智元机器人开源OmniManip:通用机器人操作

在这项工作中,我们提出了一种新颖的以对象为中心的中间表示,有效地填补了VLM和机器人操作所需的精确空间推理之间的差距。我们将交互原语结构化为对象规范空间,以将高级语义推理转化为可操作的3D空间约束。所提出的双闭环系统确保了稳健的决策和执行,而无需对VLM进行微调。我们的方法在各种操作任务中表现出强大的零样本泛化能力,突显了其自动化机器人数据生成和提高机器人系统在非结构化环境中的效率的潜力。这项工作为未来对可扩展、开放词汇的机器人操作的重新探索提供了有前途的基础。局限性。

2025-02-11 18:02:11 697

原创 兼容一切机器人!The One RING:机器人室内导航通才!具身智能新突破!

本文中,我们介绍了RINGi(RoboticIndoorNavigation Generalist),这是一种无实例依赖的策略,仅在模拟中训练,使用多种随机初始化的大规模实例(100万个实例)。RING显示了对各种未见过的实例的零样本泛化能力,在所有实例中保持一致的性能。我们的实验结果表明,RING在新实例上达到了最先进的水平,在某些情况下甚至优于实例特定策略。尽管仅在模拟中训练,但它可以直接部署到现实世界中。最后,RING能够根据其实施方式和与环境的交互动态调整其行为。

2025-02-11 17:59:36 978

原创 排名第一!NVIDIA全新开源FoundationStereo:万能立体匹配!

我们引入了FoundationStereo,这是一个用于立体深度估计的基础模型,能够在无需微调的情况下在各种领域实现强大的零样本泛化。我们设想这样的基础模型将促进立体估计模型在实际应用中的更广泛采用。尽管其泛化能力显著,但我们的方法并非没有局限性。首先,我们的模型尚未针对效率进行优化,在NVIDIA A100 GPU上对大小为375 x1242的图像进行计算需要0.7秒。未来的工作可以探索将蒸馏和剪枝技术应用于其他视觉基础模型。其次,我们的数据集FSD包含有限的透明对象集合。

2025-02-11 17:58:51 1128

原创 首次超越SOTA神经辐射场!南加大新作DBS:仅使用45%参数打造最优3D GS!

我们提出了可变形贝塔插值(DBS)方法,这是一种通过三个关键创新来推进实时光场渲染的新方法:自适应几何表示的可变形贝塔内核、高效的视向依赖色彩编码的球形贝塔以及仅依赖正则化不透明度来提高优化稳定性和效率的MCMC内核无关方法。这些创新使得DBS能够以比先前方法更少的内存和计算资源实现卓越的视觉质量。局限性。由于我们的框架是基于光栅化的,因此在排序过程中,由于深度近似不准确,偶尔会产生“弹跳效果。虽然自适应,但球形贝塔函数难以有效建模镜面反射和各向异性的镜面高光。

2025-02-11 17:57:46 278

原创 摆脱SfM依赖!北大新作GP-GS:增强高斯分布的高斯过程

我们提出了GP-GS,这是一种新颖的框架,它通过解决稀疏结构从运动恢复(SfM)重建的局限性,增强了三维结构从运动恢复(3DGS)的初始化并提高了渲染质量。我们的方法利用多输出高斯过程(MOGP)将点云加密表述为一个连续回归问题,通过学习从二维图像像素和深度先验到三维位置和颜色的映射,自适应地对稀疏SfM点云进行加密。我们引入了一种基于自适应邻域的采样策略以实现结构化加密,并应用基于方差的滤波来去除高不确定性预测。

2025-02-11 17:57:05 865

原创 3D点云任务全面涨点!DOC-Depth:从任何LiDAR传感器生成稠密深度图!

我们引入了DOC-Depth,这是一种在无限动态环境中生成密集深度地面真值的新方法。由于DOC,我们提出的动态对象分类器,我们可以自动处理图像中的物体遮挡。我们在KITTI和内部捕获的4种不同激光雪达类型的数据集上展示了我们方法的有效性。通过使用各种传感器创建新数据集,我们展示了其泛化性和部署的便利性。我们发布了KITTI深度完成和测距数据集的完全密集注释,从而可以在深度估计和完成方面进行进一步探索。软件组件可供研究界使用。对更多实验结果和文章细节感兴趣的读者,可以阅读一下论文原文~

2025-02-11 17:56:23 222

原创 将一切视为像素!

在这项工作中,我们介绍了 PIXELWORLD,这是一个评估套件,它将文本、表格、代码和图像统一为基于像素的输入,以弥合标记化文本处理和类人视觉感知之间的差距。我们对PEAP的理解实验表明,基于像素的输入提高了在结构复杂和本质上多模态任务(如网站和幻灯片)上的性能。通过减少OCR错误并保留上下文布局,它在具有挑战性的以文本为中心的任务(如高级知识推理和编码)上表现不如基于标记的方法。此外,注意力可视化显示像素补丁和文本标记之间具有高可转移性,表明未来“视觉作为标记”方法的可行性。

2025-02-11 16:46:23 420

原创 ICLR‘25 | 7个数据集SOTA!上交新作Track-On:在线、长期跟踪一切!

在这项工作中,我们提出了Track-On,一个简单而有效的基于变压器的在线点跟踪模型。为了建立对应关系,我们的模型使用补丁分类,然后通过偏移预测进行进一步的细化。我们提出了两个内存模块,能够在处理长视频时有效地实现时间连续性。我们的型在快速推理方面显著推进了在线点跟踪领域的前沿,并缩小了各种公开数据集上在线和离线模型之间的性能差距。尽管我们提出的模型具有优势,但仍存在一些局限性。具体来说,该型可能在薄表面上出现精确度损失,并且难以区分具有相似外观的实例,正如我们在失败案例中观察到的那样(参见附录)。

2025-02-11 16:45:36 309

原创 更快、更高质量的重建!GARAD-SLAM:动态3D GS SLAM全新框架

我们提出了GARAD-SLAM,它在动态场景中有效地解决了基于3DGS的SLAM系统中的跟踪漂移和地图误差问题。我们的方法引入了一种基于后端高斯映射和前端稀疏光流验证的反动态策略。通过基于神经网络的逐步更新,我们实现了动态干扰的准确消除和姿态校正。我们紧密地整合了跟踪和映射过程,它们相互增强。实验结果表明,与基线方法相比,我们的方法显著减轻了瞬时干扰和伪像的影响,在真实世界数据集上实现了最佳性能。未来的研究将侧重于将我们的方法适应于移动应用和轻量级部署。

2025-02-11 16:43:39 569

原创 ICLR‘25高分开源 | 超真实重建!ETH新作SplatFormer:第一个3DGS点Transformer模型!

在多样化的观看条件下对3D资产进行逼真渲染对于增强现实(AR)和虚拟现实(VR)应用至关重要。在本文中,我们引入了一个新的分布外(OOD)新视角合成测试场景,并证明了包括使用正则化技术和数据驱动先验在内的大多数神经渲染方法,在测试视角与训练集偏差较大时,质量会大幅下降,这凸显了需要更稳健的渲染技术。作为解决该问题的一个初步步骤,我们提出了SplatFormer,这是一种新型的点Transformer模型,旨在克服3D高斯溅射在处理OOD视角方面的局限性。

2025-02-11 16:42:54 984

原创 北大新作OccGS:具有语义和几何感知的零样本3D Occupancy重建

在这篇论文中,我们提出了一种新颖的框架:(OccGS),它可以在无需任何人工标记符号的情况下实现零样本开放词汇语义占用的重建。为了促进场景理解,我们利用视觉语言模型和多模态几何先验来构建一个语义和几何感知表示,Oc-cGS在准确性和效率之间取得了平衡。我们的框架在零镜头语义占用估计方面取得了最先进的性能,并且与监督和自监督方法相比表现良好。对更多实验结果和文章细节感兴趣的读者,可以阅读一下论文原文~

2025-02-11 16:42:06 500

原创 [硬件+代码]御风250-四旋翼无人机(基于PX4)(激光雷达版)

简单的控制算法(如PID,LQR)可以在飞控中实现,对于复杂的控制算法(如MPC)可以将位置闭环,甚至姿态闭环在板载计算机中运行,最终发布角速度指令到飞控。在板载计算机中运行激光雷达SLAM算法(课程配套FAST-LIO算法),实现位姿估计,并且将结果发送到飞控,飞控中运行EKF算法融合外部定位。在板载计算机中运行规划算法(课程配套EGO-Planner),实现在有障碍环境中的实时路径规划,并且将规划指令发送到无人机,控制无人机运动。具体包括:IMU,磁力计,气压计,GPS,光流,下视TOF,激光雷达。

2025-02-11 16:41:18 1223

原创 卡尔曼滤波及其在多传感器融合的应用[PX4 EKF2讲解]

常见的异常包括传感器数据断联,传感器数据值无效,传感器数据值有效但是不准确等,这些异常处理往往在算法之外单独设计逻辑处理。对于加速度计,GPS,光流,TOF等测量加速度,速度与位置的传感器,安装位置往往不在飞机重心,旋转将带来额外的测量误差,需要进行精确的。数据融合使用合适的算法,将各种传感器的数据映射为飞机的位置,速度与姿态。课程答疑主要在本课程对应的鹅圈子中答疑,学员学习过程中,有任何问题,可以随时在鹅圈子中提问。在缺乏良好数据预处理时,估计器的参数调节变得困难,融合的精度也将降低。

2025-02-11 16:36:55 1053

原创 科研级!HandBot-S1!三维空间扫描仪!配套硬件+源码+教程+答疑

HandBot-S1是一款开源的三维空间扫描仪,集成了3D激光雷达、双目相机、IMU、算力模块、通讯模块、电池等,并提供标定好的内外参数,免去用户硬件组装、配置、标定等麻烦,通过连接网络即可开始各种应用。HandBot-S1可用于数据采集、环境重建、机器人导航等应用。

2025-01-21 20:13:42 1256

原创 几何和运动的万能表征公式?NVIDIA全新开源:通用场景流估计!

我们的方法受益于为几何学习到的3D先验知识,但目前无法从预训练模型的任何缺陷中恢复。未来的工作应考虑使用更稳健的3D先验来引导我们的方法。此外,在我们的设置中,相机自我运动和场景运动仍然是相互纠缠的;可以引入更多技术来分解它们,并支持更多下游应用。对更多实验结果和文章细节感兴趣的读者,可以阅读一下论文原文~

2025-01-21 20:10:05 598

原创 无需训练的开源插件3DGS-to-PC:将3DGS直接转换为稠密点云或Mesh!

在本研究中,我们提出了3DGS-to-PC框架,该框架能够从3DGS(三维几何形状)场景中稳健地生成高质量的点云表示。我们的方法通过分析高斯分量对渲染图像中像素颜色的贡献,有效地计算出高斯颜色,从而确保生成的点云中颜色表示的准确性。点的分布与每个高斯分量的体积成正比。利用马氏距离识别出的离群点将被移除并重新生成,以确保3DGS场景的真实表示。该框架还支持通过泊松表面重建生成网格,该方法应用于从预测的表面高斯分量中采样的点。该框架具有高度的可定制性,提供了降噪、点云密度控制和高斯滤波等选项。

2025-01-21 20:09:26 1491

原创 兼容任意相机!博世 & CMU开源Zero-Shot深度估计新SOTA!

(DAC)框架,用我们引入了Depth AnyCamera于在各种摄像头类型(包括透视、鱼眼和360°摄像头)上进行零样本度量深度估计。通过利用高度有效的俯仰角感知lmage-to-ERP转换、视场角对齐和多分辨率训练,DAC解决了因视场角和分辨率不-致而带来的挑战,并在大视场角数据集上实现了稳健的泛化。我们的结果表明,DAC显著优于最先进的方法,并能无缝适应不同的骨干网络。在实践中,无论新应用中使用何种相机类型,DAC都能确保之前收集的每一张3D数据都保持有价值。

2025-01-21 20:08:46 861

原创 从尘埃到高塔:从稀疏无位姿图像,到照片级真实场景重建!

在本文中,我们提出了D2T,这是一种新颖的由粗到精的框架,旨在利用稀疏且未校准的图像进行逼真场景重建。D2T从稀疏且未校准的图像出发,首先利用颜色一致性最大化(CCM)方法高效地构建出一个粗略的解决方案。为了优化新视角下的三维模型,我们提出了条件自适应变形(CADA)和权重指导图像修复(WIGI)方法,通过变形和图像修复来生成新视角下的图像。这两种方法已被证明在提升新视角下渲染质量方面既有效又高效。

2025-01-21 20:08:08 570

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除