ComfyUI-Diffusers 使用教程

ComfyUI-Diffusers 使用教程

项目地址:https://gitcode.com/gh_mirrors/co/ComfyUI-Diffusers

项目介绍

ComfyUI-Diffusers 是一个自定义节点,允许用户在 ComfyUI 中使用 Huggingface Diffusers 模块。此外,Stream Diffusion 也是可用的。该项目旨在简化在 ComfyUI 环境中使用 Diffusers 模型的工作流程,提供了多种加载器和调度器,以便用户能够更方便地集成和使用 Diffusers 模型。

项目快速启动

安装步骤

  1. 克隆项目仓库:

    git clone https://github.com/Limitex/ComfyUI-Diffusers.git
    
  2. 进入项目目录:

    cd ComfyUI-Diffusers
    
  3. 安装依赖:

    pip install -r requirements.txt
    
  4. 克隆 StreamDiffusion 仓库:

    git clone https://github.com/cumulo-autumn/StreamDiffusion.git
    
  5. 安装 TensorRT(推荐):

    python -m streamdiffusion tools install-tensorrt
    

运行示例

在 ComfyUI 中运行以下命令:

python -m streamdiffusion

应用案例和最佳实践

实时生成

通过启用 Auto Queue 选项,可以实现实时生成。具体步骤如下:

  1. 在 Extra options 中启用 Auto Queue。
  2. 运行 ComfyUI 并加载 Diffusers 模型。

视频处理

结合 VideoHelperSuite,可以实现视频到视频的转换。具体步骤如下:

  1. 安装 VideoHelperSuite:
    git clone https://github.com/Kosinkadink/ComfyUI-VideoHelperSuite.git
    
  2. 在 ComfyUI 中配置并运行 vid2vid 流程。

典型生态项目

ComfyUI-VideoHelperSuite

这是一个与 ComfyUI 集成的视频处理工具套件,提供了丰富的视频处理功能,如视频剪辑、转换和增强等。通过与 ComfyUI-Diffusers 结合使用,可以实现更复杂的视频生成和处理任务。

StreamDiffusion

StreamDiffusion 是一个实时扩散模型处理工具,通过与 ComfyUI 集成,可以实现高效的实时生成和处理。它提供了多种加载器和调度器,以便用户能够更方便地集成和使用 Diffusers 模型。

通过以上步骤和示例,您可以快速上手并充分利用 ComfyUI-Diffusers 项目,实现高效的模型集成和应用。

ComfyUI-Diffusers This repository is a custom node in ComfyUI. This is a program that allows you to use Huggingface Diffusers module with ComfyUI. Additionally, Stream Diffusion is also available. ComfyUI-Diffusers 项目地址: https://gitcode.com/gh_mirrors/co/ComfyUI-Diffusers

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

### Flux 和 Diffusers 初学者使用教程 #### 了解 Flux 和 Diffusers Flux 是一种参数量较大的模型,包括扩展编码器、自动编码器和扩散模型[^1]。这些组件共同作用使得 Flux 能够处理复杂的图像生成任务。Diffusers 库则提供了用于推理的强大工具,在使用 Flux 进行推理时,显存占用约为 30 GB。 对于初学者来说,可以先尝试使用较小规模的预训练模型来熟悉工作流程。例如,ComfyUI 提供了一个部署与测试 FLUX.1 图像生成模型的教程,该版本采用 FP16 格式,大小约 23 GB[^2]。这有助于减少硬件资源的需求,使学习过程更加顺畅。 #### 安装环境 为了开始使用 Flux 和 Diffusers,首先需要安装必要的库: ```bash pip install diffusers transformers safetensors ``` 如果打算通过 ComfyUI 来运行,则还需要按照其官方文档中的说明设置相应的环境。 #### 加载并配置模型 加载 Flux 模型可以通过 Hugging Face Model Hub 实现。下面是一个简单的 Python 示例代码片段展示如何加载 `black-forest-labs/FLUX.1-dev` 模型[^4]: ```python from diffusers import StableDiffusionPipeline model_id = "black-forest-labs/FLUX.1-dev" pipeline = StableDiffusionPipeline.from_pretrained(model_id).to("cuda") ``` 这段代码会下载指定 ID 的预训练权重,并将其移动到 GPU 上以便加速计算。 #### 修改配置文件 当涉及到微调或其他高级操作时,可能需要调整一些超参数或路径设定。比如在 `train_lora_flux_24gb.yaml` 文件中指定了图像数据集的位置以及所使用的基底扩散模型名称[^3]: ```yaml folder_path: "joy-caption-pre-alpha/image_datasets/yky_ori_dataset" name_or_path: "FLUX.1-dev" ``` 这里定义了两个重要字段:一个是存储图片及其对应描述文本的数据集目录;另一个是指向作为起点的基础扩散模型。 #### 执行推理 完成上述准备工作之后就可以执行实际的任务了。假设已经准备好了一张输入图片,那么接下来就是调用 pipeline 对象来进行预测: ```python import torch from PIL import Image image = Image.open("path_to_input_image.jpg") # 替换成自己的图片路径 output_images = pipeline(prompt="a photo of an astronaut riding a horse", image=image, num_inference_steps=50) for i, img in enumerate(output_images.images): img.save(f"output_{i}.png") ``` 此脚本读取一张本地图片文件作为条件输入,并根据给定提示词生成新的合成图像保存至磁盘上。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

史跃骏Erika

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值