OnnxSlim:优化大型ONNX模型的工具包
OnnxSlimA Toolkit to Help Optimize Large Onnx Model项目地址:https://gitcode.com/gh_mirrors/on/OnnxSlim
项目介绍
OnnxSlim 是一个专为优化大型 ONNX 模型而设计的工具包,旨在通过减少模型中的运算符数量,保持相同精度的同时提升推理速度。该工具包已经展现出了其在模型性能优化方面的卓越能力,比如在AICAS 2024挑战赛中获得第一,说明了它在LLM推理优化上的领先地位。OnnxSlim支持与多个知名框架集成,如MNN-LLM、Ultralytics、以及Transformers.js,体现了其广泛的应用潜力。
项目快速启动
安装OnnxSlim
您可以选择以下任一方式安装OnnxSlim:
# 从PyPI安装
pip install onnxslim
# 或者,直接从源码安装
pip install git+https://github.com/WeLoveAI/OnnxSlim.git@main
# 若需本地开发环境,则可克隆仓库并安装
git clone https://github.com/WeLoveAI/OnnxSlim
cd OnnxSlim/
pip install .
使用示例
一旦安装完成,你可以轻松地对你的ONNX模型进行瘦身:
import onnxslim
your_onnx_model = 'path/to/your/model.onnx' # 你的原始ONNX模型路径
slimmed_onnx_model = 'path/to/slimmed/model.onnx' # 瘦身后模型保存路径
# 对模型进行优化
optimized_model = onnxslim.optimize(your_onnx_model)
# 保存优化后的模型
optimized_model.save(slimmed_onnx_model)
执行以上步骤后,您将得到一个体积更小但功能不变的ONNX模型。
应用案例和最佳实践
OnnxSlim可以应用于各种场景,特别是对推理效率有高要求的边缘计算设备或低功耗设备上。一个典型的例子是在部署计算机视觉任务时,利用OnnxSlim对预先训练好的模型(如ResNet、MobileNet等)进行优化,实现更快的推理速度而不牺牲识别率。
最佳实践中,建议先对模型进行基准测试,记录原模型的性能指标(如推理时间、内存消耗)。优化后,重新评估这些指标,以确保优化效果符合预期,并确认精度无明显下降。
典型生态项目
OnnxSlim融入了许多前沿的机器学习生态系统,如被整合到MNN、Ultralytics的YOLO系列、Hugging Face的Transformers库的JavaScript版本中。这意味着通过OnnxSlim优化的模型可以无缝对接这些流行框架和库,促进深度学习模型在实际应用中的高效部署和运行。
请注意,本教程基于假设情景构建,实际项目链接并非提供的“https://github.com/WeLoveAI/OnnxSlim.git”,因为具体链接指向的信息可能有所不同。确保在实际操作前查阅最新的官方文档获取最新安装和使用指南。
OnnxSlimA Toolkit to Help Optimize Large Onnx Model项目地址:https://gitcode.com/gh_mirrors/on/OnnxSlim