onnx模型部署:onnxruntime-gpu安装与测试(Python版)

22 篇文章 1 订阅 ¥69.90 ¥99.00

目录

1. onnxruntime 安装

2. onnxruntime-gpu 安装

2.1 方法一:onnxruntime-gpu依赖于本地主机上cuda和cudnn

2.2 方法二:onnxruntime-gpu不依赖于本地主机上cuda和cudnn

2.2.1 举例:创建onnxruntime-gpu==1.14.1的conda环境

2.2.2 举例:实例测试


1. onnxruntime 安装

onnx 模型在 CPU 上进行推理,在conda环境中直接使用pip安装即可

pip install onnxruntime

2. onnxruntime-gpu 安装


想要 onnx 模型在 GPU 上加速推理,需要安装 onnxruntime-gpu 。有两种思路

依赖于 本地主机 上已安装的 cuda 和 cudnn 版本
不依赖于 本地主机 上已安装的 cuda 和 cudnn 版本
要注意:onnxruntime-gpu, cuda, cudnn三者的版本要对应,否则会报错 或 不能使用GPU推理。
onnxruntime-gpu, cuda, cudnn版本对应关系详见: 官网

onnxruntime-gpu-c++是一个用于在GPU上运行模型的C++库,它支持使用ONNX格式的模型进行推理。下面是一个简单的部署步骤: 1. 安装CUDA和cuDNN onnxruntime-gpu-c++需要CUDA和cuDNN来加速模型推理。您需要安装onnxruntime-gpu-c++本兼容的CUDA和cuDNN。您可以从NVIDIA官方网站下载并安装这些软件。 2. 安装onnxruntime-gpu-c++ 您可以从onnxruntime-gpu-c++的GitHub仓库中下载源代码,并使用CMake生成库文件。在生成过程中,您需要指定CUDA和cuDNN的路径。 3. 加载模型 使用onnxruntime-gpu-c++加载ONNX格式的模型。您可以使用onnxruntime-cxx库中的API来加载模型并进行推理。以下是一个简单的示例代码: ```cpp #include <iostream> #include <vector> #include <chrono> #include <onnxruntime_cxx_api.h> int main() { Ort::SessionOptions session_options; Ort::Env env(ORT_LOGGING_LEVEL_WARNING, "test"); Ort::Session session(env, "model.onnx", session_options); Ort::AllocatorWithDefaultOptions allocator; Ort::Value input_tensor = Ort::Value::CreateTensor<float>(allocator, {1, 3, 224, 224}); float* input_tensor_data = input_tensor.GetTensorMutableData<float>(); // fill input tensor with data ... std::vector<const char*> input_names = {"input"}; std::vector<const char*> output_names = {"output"}; std::vector<int64_t> input_shape = {1, 3, 224, 224}; std::vector<float> output_data(1000); Ort::RunOptions run_options; Ort::TensorSlicer<float> input_tensor_slicer(input_tensor, input_shape); auto start_time = std::chrono::high_resolution_clock::now(); for (auto& slice : input_tensor_slicer) { Ort::Value input_tensor_slice = Ort::Value::CreateTensor<float>(allocator, slice.shape().data(), slice.shape().size(), slice.data(), slice.size()); Ort::Value output_tensor = session.Run(run_options, input_names.data(), &input_tensor_slice, 1, output_names.data(), 1); std::memcpy(output_data.data() + slice.offset(), output_tensor.GetTensorData<float>(), slice.size() * sizeof(float)); } auto end_time = std::chrono::high_resolution_clock::now(); std::cout << "Inference time: " << std::chrono::duration_cast<std::chrono::milliseconds>(end_time - start_time).count() << "ms" << std::endl; // process output data ... } ``` 在这个示例中,我们使用onnxruntime-gpu-c++加载了名为“model.onnx”的模型,并将输入数据填充到名为“input”的张量中。然后,我们运行了推理,并将输出数据存储在名为“output_data”的向量中。最后,我们对输出数据进行了处理。 4. 运行推理 在加载模型和填充输入数据后,您可以使用session.Run()方法运行推理。您需要指定输入和输出张量的名称,并将它们传递给session.Run()方法。 5. 处理输出 session.Run()方法将返回一个或多个输出张量。您可以使用GetTensorData()方法获取输出张量的数据,并对其进行处理。 这些是一个简单的onnxruntime-gpu-c++部署步骤。您可以根据具体情况进行适当的修改。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值