ControlNet++ 项目使用教程
1. 项目目录结构及介绍
ControlNet++ 项目的目录结构如下:
ControlNet_Plus_Plus/
├── train/
│ ├── reward_ade20k.sh
│ ├── reward_cocostuff.sh
│ ├── reward_canny.sh
│ ├── reward_depth.sh
│ ├── reward_hed.sh
│ └── reward_linedrawing.sh
├── eval/
│ ├── eval_ade20k.sh
│ ├── eval_cocostuff.sh
│ ├── eval_canny.sh
│ ├── eval_depth.sh
│ ├── eval_hed.sh
│ └── eval_linedrawing.sh
├── checkpoints/
│ ├── lineart_model/
│ ├── depth_model/
│ ├── hed_model/
│ ├── canny_model/
│ ├── segmentation_ade20k/
│ └── segmentation_cocostuff/
├── requirements.txt
├── LICENSE.txt
├── README.md
├── ade20k_palette.npy
├── coco_stuff_palette.npy
└── ...
目录结构介绍:
- train/: 包含用于训练不同任务的脚本,如
reward_ade20k.sh
用于 ADE20K 数据集的训练。 - eval/: 包含用于评估不同任务的脚本,如
eval_ade20k.sh
用于 ADE20K 数据集的评估。 - checkpoints/: 包含预训练模型的权重文件,如
lineart_model/
包含线稿模型的权重。 - requirements.txt: 列出了项目所需的 Python 依赖包。
- LICENSE.txt: 项目的开源许可证文件。
- README.md: 项目的介绍文档。
- ade20k_palette.npy 和 coco_stuff_palette.npy: 数据集的调色板文件。
2. 项目启动文件介绍
项目的启动文件主要集中在 train/
和 eval/
目录下。以下是一些关键的启动文件:
训练脚本
- train/reward_ade20k.sh: 用于在 ADE20K 数据集上进行训练。
- train/reward_cocostuff.sh: 用于在 COCOStuff 数据集上进行训练。
- train/reward_canny.sh: 用于在 Canny 边缘检测任务上进行训练。
- train/reward_depth.sh: 用于在深度图任务上进行训练。
- train/reward_hed.sh: 用于在 HED 边缘检测任务上进行训练。
- train/reward_linedrawing.sh: 用于在线稿任务上进行训练。
评估脚本
- eval/eval_ade20k.sh: 用于在 ADE20K 数据集上进行评估。
- eval/eval_cocostuff.sh: 用于在 COCOStuff 数据集上进行评估。
- eval/eval_canny.sh: 用于在 Canny 边缘检测任务上进行评估。
- eval/eval_depth.sh: 用于在深度图任务上进行评估。
- eval/eval_hed.sh: 用于在 HED 边缘检测任务上进行评估。
- eval/eval_linedrawing.sh: 用于在线稿任务上进行评估。
3. 项目的配置文件介绍
项目的配置文件主要包括 requirements.txt
和 train/
目录下的脚本文件。
requirements.txt
requirements.txt
文件列出了项目运行所需的 Python 依赖包,例如:
mmengine
mmcv==2.1.0
mmsegmentation>=1.0.0
mmdet
clean-fid
torchmetrics
训练脚本配置
训练脚本中包含了一些配置参数,例如:
- 数据集路径: 训练和评估数据集的路径。
- 模型权重路径: 预训练模型的权重路径。
- 训练参数: 如批量大小、学习率、梯度累积步数等。
例如,train/reward_ade20k.sh
脚本中可能包含以下配置:
# 数据集路径
DATASET_PATH="path/to/ade20k"
# 模型权重路径
MODEL_WEIGHTS="checkpoints/ade20k_model.pth"
# 训练参数
BATCH_SIZE=8
LEARNING_RATE=0.001
GRAD_ACCUMULATION_STEPS=2
通过这些配置文件和脚本,用户可以方便地启动训练和评估任务。