PyramidNet-PyTorch 使用教程

PyramidNet-PyTorch 使用教程

PyramidNet-PyTorchA PyTorch implementation for PyramidNets (Deep Pyramidal Residual Networks, https://arxiv.org/abs/1610.02915)项目地址:https://gitcode.com/gh_mirrors/py/PyramidNet-PyTorch

1. 项目的目录结构及介绍

PyramidNet-PyTorch/
├── LICENSE
├── README.md
├── preresnet.py
├── resnet.py
├── train.py
└── pyramidnet.py
  • LICENSE: 项目许可证文件,采用MIT许可证。
  • README.md: 项目说明文档,包含项目的基本信息和使用方法。
  • preresnet.py: 预激活ResNet架构的实现文件。
  • resnet.py: ResNet架构的实现文件。
  • train.py: 训练脚本,用于训练模型。
  • pyramidnet.py: PyramidNet架构的实现文件。

2. 项目的启动文件介绍

项目的启动文件是 train.py,该文件负责模型的训练过程。以下是 train.py 的主要功能:

  • 加载数据集
  • 定义模型
  • 设置优化器和损失函数
  • 进行训练循环
  • 保存训练好的模型

使用方法:

python train.py

3. 项目的配置文件介绍

项目中没有显式的配置文件,但可以通过修改 train.py 中的参数来配置训练过程。例如:

  • 数据集路径
  • 模型类型(ResNet, Pre-ResNet, PyramidNet)
  • 优化器类型和参数
  • 学习率调度
  • 训练轮数

train.py 中,可以通过命令行参数或直接修改代码中的默认值来进行配置。

示例:

# train.py
parser = argparse.ArgumentParser(description='PyramidNet Training')
parser.add_argument('--dataset', default='cifar10', type=str, help='Dataset name')
parser.add_argument('--model', default='pyramidnet', type=str, help='Model type')
parser.add_argument('--batch_size', default=128, type=int, help='Batch size for training')
parser.add_argument('--epochs', default=200, type=int, help='Number of training epochs')
parser.add_argument('--lr', default=0.1, type=float, help='Initial learning rate')
# 其他参数...

通过命令行传递参数:

python train.py --dataset cifar100 --model pyramidnet --batch_size 64 --epochs 300 --lr 0.01

以上是 PyramidNet-PyTorch 项目的基本使用教程,涵盖了项目的目录结构、启动文件和配置方法。希望对您有所帮助!

PyramidNet-PyTorchA PyTorch implementation for PyramidNets (Deep Pyramidal Residual Networks, https://arxiv.org/abs/1610.02915)项目地址:https://gitcode.com/gh_mirrors/py/PyramidNet-PyTorch

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

凤红令Nathania

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值