PyramidNet-PyTorch 使用教程
1. 项目的目录结构及介绍
PyramidNet-PyTorch/
├── LICENSE
├── README.md
├── preresnet.py
├── resnet.py
├── train.py
└── pyramidnet.py
- LICENSE: 项目许可证文件,采用MIT许可证。
- README.md: 项目说明文档,包含项目的基本信息和使用方法。
- preresnet.py: 预激活ResNet架构的实现文件。
- resnet.py: ResNet架构的实现文件。
- train.py: 训练脚本,用于训练模型。
- pyramidnet.py: PyramidNet架构的实现文件。
2. 项目的启动文件介绍
项目的启动文件是 train.py
,该文件负责模型的训练过程。以下是 train.py
的主要功能:
- 加载数据集
- 定义模型
- 设置优化器和损失函数
- 进行训练循环
- 保存训练好的模型
使用方法:
python train.py
3. 项目的配置文件介绍
项目中没有显式的配置文件,但可以通过修改 train.py
中的参数来配置训练过程。例如:
- 数据集路径
- 模型类型(ResNet, Pre-ResNet, PyramidNet)
- 优化器类型和参数
- 学习率调度
- 训练轮数
在 train.py
中,可以通过命令行参数或直接修改代码中的默认值来进行配置。
示例:
# train.py
parser = argparse.ArgumentParser(description='PyramidNet Training')
parser.add_argument('--dataset', default='cifar10', type=str, help='Dataset name')
parser.add_argument('--model', default='pyramidnet', type=str, help='Model type')
parser.add_argument('--batch_size', default=128, type=int, help='Batch size for training')
parser.add_argument('--epochs', default=200, type=int, help='Number of training epochs')
parser.add_argument('--lr', default=0.1, type=float, help='Initial learning rate')
# 其他参数...
通过命令行传递参数:
python train.py --dataset cifar100 --model pyramidnet --batch_size 64 --epochs 300 --lr 0.01
以上是 PyramidNet-PyTorch
项目的基本使用教程,涵盖了项目的目录结构、启动文件和配置方法。希望对您有所帮助!