PWPAE-Concept-Drift-Detection-and-Adaptation 项目教程

PWPAE-Concept-Drift-Detection-and-Adaptation 项目教程

PWPAE-Concept-Drift-Detection-and-Adaptation Data stream analytics: Implement online learning methods to address concept drift and model drift in data streams using the River library. Code for the paper entitled "PWPAE: An Ensemble Framework for Concept Drift Adaptation in IoT Data Streams" published in IEEE GlobeCom 2021. PWPAE-Concept-Drift-Detection-and-Adaptation 项目地址: https://gitcode.com/gh_mirrors/pw/PWPAE-Concept-Drift-Detection-and-Adaptation

1. 项目目录结构及介绍

PWPAE-Concept-Drift-Detection-and-Adaptation/
├── data/
│   └── ...
├── libraries/
│   └── ...
├── 2109_05013_paper.pdf
├── CICIDS2017.png
├── IoTID20.png
├── LICENSE
├── README.md
├── framework.jpg
├── globecom2021_PWPAE_CICIDS2017.ipynb
├── globecom2021_PWPAE_IoTID20.ipynb
└── ...

目录结构说明

  • data/: 存放项目所需的数据文件。
  • libraries/: 存放项目依赖的库文件。
  • 2109_05013_paper.pdf: 项目相关的论文文件。
  • CICIDS2017.png: CICIDS2017 数据集的图片文件。
  • IoTID20.png: IoTID20 数据集的图片文件。
  • LICENSE: 项目的开源许可证文件。
  • README.md: 项目的说明文档。
  • framework.jpg: 项目框架的图片文件。
  • globecom2021_PWPAE_CICIDS2017.ipynb: 针对 CICIDS2017 数据集的 Jupyter Notebook 文件。
  • globecom2021_PWPAE_IoTID20.ipynb: 针对 IoTID20 数据集的 Jupyter Notebook 文件。

2. 项目启动文件介绍

项目的主要启动文件是 Jupyter Notebook 文件,包括:

  • globecom2021_PWPAE_CICIDS2017.ipynb: 用于在 CICIDS2017 数据集上进行概念漂移检测和适应的 Notebook 文件。
  • globecom2021_PWPAE_IoTID20.ipynb: 用于在 IoTID20 数据集上进行概念漂移检测和适应的 Notebook 文件。

启动步骤

  1. 安装项目所需的依赖库,可以使用以下命令:
    pip install -r requirements.txt
    
  2. 启动 Jupyter Notebook:
    jupyter notebook
    
  3. 在 Jupyter Notebook 界面中打开相应的 .ipynb 文件,按照 Notebook 中的步骤执行代码。

3. 项目的配置文件介绍

项目中没有明确的配置文件,但可以通过 Jupyter Notebook 文件中的代码进行配置。主要的配置项包括:

  • 数据集路径: 在 Notebook 中指定数据集的路径。
  • 模型参数: 在 Notebook 中配置模型的参数,如 grace_periodsplit_confidence 等。
  • 漂移检测器: 选择和配置漂移检测器,如 ADWINDDM

示例配置

globecom2021_PWPAE_CICIDS2017.ipynb 文件中,可以找到如下配置示例:

from river import ensemble
from river import tree

model = ensemble.AdaptiveRandomForestClassifier(
    n_models=3,
    drift_detector=ADWIN()
)

通过修改这些参数,可以调整模型的行为和性能。

PWPAE-Concept-Drift-Detection-and-Adaptation Data stream analytics: Implement online learning methods to address concept drift and model drift in data streams using the River library. Code for the paper entitled "PWPAE: An Ensemble Framework for Concept Drift Adaptation in IoT Data Streams" published in IEEE GlobeCom 2021. PWPAE-Concept-Drift-Detection-and-Adaptation 项目地址: https://gitcode.com/gh_mirrors/pw/PWPAE-Concept-Drift-Detection-and-Adaptation

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

陆滔柏Precious

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值