Arduino Core for CH32V003 安装和配置指南

Arduino Core for CH32V003 安装和配置指南

arduino-wch32v003 Arduino Core for CH32V003 RISC-V microcontroller arduino-wch32v003 项目地址: https://gitcode.com/gh_mirrors/ar/arduino-wch32v003

1. 项目基础介绍和主要编程语言

项目基础介绍

Arduino Core for CH32V003 是一个为 CH32V003 系列 RISC-V 微控制器开发的 Arduino 核心库。CH32V003 系列是基于 QingKe RISC-V2A 核心设计的工业级通用微控制器,支持 48MHz 系统主频,具有宽电压、低功耗、超小封装等特点。该项目旨在为开发者提供一个易于使用的 Arduino 开发环境,使得开发者能够快速上手并开发基于 CH32V003 的嵌入式应用。

主要编程语言

该项目主要使用 C 和 C++ 编程语言。C 语言用于底层硬件的驱动和控制,而 C++ 则用于更高层次的抽象和 Arduino 库的实现。

2. 项目使用的关键技术和框架

关键技术

  • RISC-V 架构:CH32V003 微控制器基于 RISC-V 架构,具有高效的指令集和低功耗特性。
  • Arduino 核心库:该项目基于 ArduinoCore-API,提供了 Arduino 开发环境的核心功能。
  • WCH-LinkE 编程器:用于烧录和调试 CH32V003 微控制器的工具。

框架

  • Arduino IDE:开发者使用 Arduino IDE 进行代码编写、编译和烧录。
  • CNLohr/ch32v003fun:提供了基本的工具链、引导代码和烧录工具。

3. 项目安装和配置的准备工作和详细安装步骤

准备工作

  1. 安装 Arduino IDE:确保你已经安装了最新版本的 Arduino IDE。可以从 Arduino 官方网站下载并安装。
  2. 获取 WCH-LinkE 编程器:如果你使用的是 Windows 系统,需要准备一个 WCH-LinkE 编程器用于烧录和调试。
  3. 下载项目代码:从 GitHub 仓库下载 Arduino Core for CH32V003 的代码。

详细安装步骤

步骤 1:安装 Arduino IDE
  1. 访问 Arduino 官方网站 下载适合你操作系统的 Arduino IDE 安装包。
  2. 运行安装包,按照提示完成安装。
步骤 2:配置 Arduino IDE
  1. 打开 Arduino IDE,进入 文件 -> 首选项
  2. 附加开发板管理器网址 中添加以下 URL:
    https://alexandermandera.github.io/arduino-wch32v003/package_ch32v003_index.json
    
  3. 点击 确定 保存设置。
步骤 3:安装 WCH Boards 平台
  1. 进入 工具 -> 开发板 -> 开发板管理器
  2. 在搜索框中输入 WCH Boards,找到并安装 WCH Boards 平台。
步骤 4:配置 WCH-LinkE 编程器(仅限 Windows 用户)
  1. 连接 WCH-LinkE 编程器到电脑。
  2. 安装 WCH-LinkE 驱动程序,确保编程器能够被系统识别。
步骤 5:选择开发板
  1. 进入 工具 -> 开发板,选择 CH32V003 开发板。
  2. 配置相应的端口和编程器。
步骤 6:编写和上传代码
  1. 在 Arduino IDE 中编写你的代码。
  2. 点击 上传 按钮,将代码烧录到 CH32V003 微控制器中。

注意事项

  • 确保所有驱动程序和工具链都已正确安装。
  • 在编写代码时,参考项目提供的示例代码和文档,以便更好地理解和使用 CH32V003 的功能。

通过以上步骤,你就可以成功安装和配置 Arduino Core for CH32V003,并开始开发基于 CH32V003 的嵌入式应用。

arduino-wch32v003 Arduino Core for CH32V003 RISC-V microcontroller arduino-wch32v003 项目地址: https://gitcode.com/gh_mirrors/ar/arduino-wch32v003

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

### 将PaddleOCR模型换为ONNX格式 为了将PaddleOCR中的推理模型换成ONNX格式,需遵循特定的过程并准备必要的资源。此过程适用于希望利用ONNX优化部署流程或跨平台支持的应用场景。 #### 准备工作 确保拥有待换的PaddleOCR推理模型URL或是本地tar包路径作为输入源。对于文字识别类模型而言,还需额外准备好对应的字符映射表(txt文件),以便将其集成至最终导出的ONNX模型内[^1]。 #### 换命令示例 针对文字识别模型的具体换操作可以通过`paddle2onnx`工具完成: ```bash paddle2onnx --model_dir ./inference_large/rec/ \ --model_filename inference.pdmodel \ --params_filename inference.pdiparams \ --save_file ./onnx_model/rec_large.onnx \ --opset_version 11 \ --enable_onnx_checker True ``` 这条指令会读取位于指定目录下的`.pdmodel`与`.pdiparams`两个文件,并按照设定参数保存为新的ONNX格式模型文件于目标位置。其中`--opset_version`指定了所使用的ONNX版本号;而`--enable_onnx_checker`选项则用于启用对生成模型的有效性验证功能[^2]。 #### 修改模型配置 默认情况下,换后的ONNX模型具有固定的输入维度(-1, 3, 32, 100)。如果应用需求涉及到不同大小的数据集,则可能需要调整这些预设值来匹配实际应用场景的要求。这一步骤通常借助第三方库如`onnx`来进行编程式的修改。 ```python import onnx from onnx import helper as hlp # 加载现有模型定义 model = onnx.load('rec_large.onnx') # 获取第一个节点的信息 input_node = model.graph.input[0] # 更新输入张量形状属性 new_shape = ['?', '3', '?', '?'] # '?' 表示动态轴 dim_value_proto_list = [] for dim in new_shape: if isinstance(dim, str): dvp = hlp.make_tensor_value_info(name='dynamic_dim', elem_type=7, shape=[], vals=None) dim_value_proto_list.append(dvp) else: dim_value_proto_list.append(hlp.make_tensor_value_info( name='', elem_type=7, shape=[], vals=np.array([int(dim)]).astype(np.int64))) hlp.set_shape(input_node.type.tensor_type.shape.dim, dim_value_proto_list) # 保存更新过的模型结构 onnx.save(model, "modified_rec_large.onnx") ``` 这段Python脚本展示了如何更改已有的ONNX模型输入层的尺寸信息,使之能够适应更广泛范围内的图像分辨率变化情况。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

吴爱望Helena

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值