PyTorch Tabular 项目下载及安装教程

PyTorch Tabular 项目下载及安装教程

pytorch_tabular A standard framework for modelling Deep Learning Models for tabular data pytorch_tabular 项目地址: https://gitcode.com/gh_mirrors/py/pytorch_tabular

1. 项目介绍

PyTorch Tabular 是一个旨在简化深度学习模型在表格数据上的应用和研究的框架。它基于 PyTorch 和 PyTorch Lightning,设计的核心原则包括低阻力可用性、易于定制、可扩展性和易于部署。该框架支持多种深度学习模型,如前馈网络、神经遗忘决策集成、TabNet、混合密度网络等,适用于分类和回归任务。

2. 项目下载位置

PyTorch Tabular 项目的源代码托管在 GitHub 上。你可以通过以下命令克隆项目到本地:

git clone https://github.com/manujosephv/pytorch_tabular.git

3. 项目安装环境配置

在安装 PyTorch Tabular 之前,你需要确保你的环境中已经安装了 PyTorch。推荐首先从 PyTorch 官方网站下载并安装适合你机器的 PyTorch 版本。

环境配置示例

以下是一个典型的环境配置示例:

  • 操作系统: Ubuntu 20.04
  • Python 版本: 3.8
  • PyTorch 版本: 1.10.0
  • CUDA 版本: 11.3

你可以使用以下命令安装 PyTorch:

pip install torch==1.10.0+cu113 torchvision==0.11.1+cu113 torchaudio==0.10.0+cu113 -f https://download.pytorch.org/whl/torch_stable.html

环境配置图片示例

环境配置示例

4. 项目安装方式

在安装了 PyTorch 之后,你可以通过以下命令安装 PyTorch Tabular:

pip install -U "pytorch_tabular[extra]"

如果你只需要基本功能,可以使用以下命令:

pip install -U "pytorch_tabular"

5. 项目处理脚本

以下是一个简单的示例脚本,展示了如何使用 PyTorch Tabular 进行模型训练和评估:

from pytorch_tabular import TabularModel
from pytorch_tabular.models import CategoryEmbeddingModelConfig
from pytorch_tabular.config import (
    DataConfig,
    OptimizerConfig,
    TrainerConfig,
    ExperimentConfig,
)

# 数据配置
data_config = DataConfig(
    target=["target"],  # 目标列应始终为列表
    continuous_cols=num_col_names,
    categorical_cols=cat_col_names,
)

# 训练配置
trainer_config = TrainerConfig(
    auto_lr_find=True,  # 运行 LRFinder 自动推导学习率
    batch_size=1024,
    max_epochs=100,
)

# 优化器配置
optimizer_config = OptimizerConfig()

# 模型配置
model_config = CategoryEmbeddingModelConfig(
    task="classification",
    layers="1024-512-512",  # 每层节点数
    activation="LeakyReLU",  # 每层之间的激活函数
    learning_rate=1e-3,
)

# 创建 TabularModel 实例
tabular_model = TabularModel(
    data_config=data_config,
    model_config=model_config,
    optimizer_config=optimizer_config,
    trainer_config=trainer_config,
)

# 训练模型
tabular_model.fit(train=train, validation=val)

# 评估模型
result = tabular_model.evaluate(test)

# 预测
pred_df = tabular_model.predict(test)

# 保存模型
tabular_model.save_model("examples/basic")

# 加载模型
loaded_model = TabularModel.load_model("examples/basic")

通过以上步骤,你可以成功下载、安装并使用 PyTorch Tabular 进行表格数据的深度学习任务。

pytorch_tabular A standard framework for modelling Deep Learning Models for tabular data pytorch_tabular 项目地址: https://gitcode.com/gh_mirrors/py/pytorch_tabular

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

水骊梓Maureen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值