Whisper.cpp 安装和配置指南
whisper.cpp OpenAI 的 Whisper 模型在 C/C++ 中的移植版本。 项目地址: https://gitcode.com/gh_mirrors/wh/whisper.cpp
1. 项目基础介绍和主要编程语言
Whisper.cpp 是一个高性能的自动语音识别(ASR)模型的 C/C++ 实现,它是 OpenAI 的 Whisper 模型的移植版本。该项目的主要编程语言是 C 和 C++,旨在提供一个轻量级、高效且易于集成的语音识别解决方案。
2. 项目使用的关键技术和框架
Whisper.cpp 项目使用了以下关键技术和框架:
- C/C++: 项目的主要编程语言,用于实现高性能的语音识别模型。
- ARM NEON: 针对 Apple Silicon 的优化,利用 ARM NEON 指令集加速计算。
- Accelerate 框架: 用于在 Apple 设备上进行高效的矩阵运算。
- Metal 和 Core ML: 提供 GPU 加速支持,特别是在 Apple 设备上。
- AVX 和 VSX 指令集: 分别针对 x86 和 POWER 架构的优化。
- Vulkan 和 OpenVINO: 提供跨平台的 GPU 和 NPU 支持。
3. 项目安装和配置的准备工作和详细安装步骤
准备工作
在开始安装之前,请确保你的系统满足以下要求:
- 操作系统:Mac OS(Intel 和 Arm)、iOS、Android、Linux、FreeBSD、Windows(MSVC 和 MinGW)。
- 开发工具:Git、CMake、C/C++ 编译器(如 GCC 或 Clang)。
详细安装步骤
步骤 1:克隆项目仓库
首先,使用 Git 克隆 Whisper.cpp 项目到本地:
git clone https://github.com/ggerganov/whisper.cpp.git
步骤 2:进入项目目录
进入克隆下来的项目目录:
cd whisper.cpp
步骤 3:下载预训练模型
下载一个预训练的 Whisper 模型,并将其转换为 ggml 格式。你可以使用项目提供的脚本来下载模型:
sh ./models/download-ggml-model.sh base.en
这将会下载一个名为 ggml-base.en.bin
的模型文件,并将其保存在 models
目录下。
步骤 4:编译项目
使用 CMake 来配置和编译项目。首先创建一个构建目录,并进入该目录:
mkdir build
cd build
然后,运行 CMake 进行配置:
cmake ..
最后,编译项目:
make
步骤 5:运行示例程序
编译完成后,你可以运行示例程序来测试安装是否成功。例如,使用以下命令来转录音频文件:
./main -f ../samples/jfk.wav
这将使用你下载的模型来转录 jfk.wav
文件中的语音内容。
总结
通过以上步骤,你已经成功安装并配置了 Whisper.cpp 项目。你可以根据需要进一步探索项目的其他功能和示例,或者将其集成到你自己的应用程序中。
whisper.cpp OpenAI 的 Whisper 模型在 C/C++ 中的移植版本。 项目地址: https://gitcode.com/gh_mirrors/wh/whisper.cpp