Whisper.cpp 安装和配置指南

Whisper.cpp 安装和配置指南

whisper.cpp OpenAI 的 Whisper 模型在 C/C++ 中的移植版本。 whisper.cpp 项目地址: https://gitcode.com/gh_mirrors/wh/whisper.cpp

1. 项目基础介绍和主要编程语言

Whisper.cpp 是一个高性能的自动语音识别(ASR)模型的 C/C++ 实现,它是 OpenAI 的 Whisper 模型的移植版本。该项目的主要编程语言是 C 和 C++,旨在提供一个轻量级、高效且易于集成的语音识别解决方案。

2. 项目使用的关键技术和框架

Whisper.cpp 项目使用了以下关键技术和框架:

  • C/C++: 项目的主要编程语言,用于实现高性能的语音识别模型。
  • ARM NEON: 针对 Apple Silicon 的优化,利用 ARM NEON 指令集加速计算。
  • Accelerate 框架: 用于在 Apple 设备上进行高效的矩阵运算。
  • Metal 和 Core ML: 提供 GPU 加速支持,特别是在 Apple 设备上。
  • AVX 和 VSX 指令集: 分别针对 x86 和 POWER 架构的优化。
  • Vulkan 和 OpenVINO: 提供跨平台的 GPU 和 NPU 支持。

3. 项目安装和配置的准备工作和详细安装步骤

准备工作

在开始安装之前,请确保你的系统满足以下要求:

  • 操作系统:Mac OS(Intel 和 Arm)、iOS、Android、Linux、FreeBSD、Windows(MSVC 和 MinGW)。
  • 开发工具:Git、CMake、C/C++ 编译器(如 GCC 或 Clang)。

详细安装步骤

步骤 1:克隆项目仓库

首先,使用 Git 克隆 Whisper.cpp 项目到本地:

git clone https://github.com/ggerganov/whisper.cpp.git
步骤 2:进入项目目录

进入克隆下来的项目目录:

cd whisper.cpp
步骤 3:下载预训练模型

下载一个预训练的 Whisper 模型,并将其转换为 ggml 格式。你可以使用项目提供的脚本来下载模型:

sh ./models/download-ggml-model.sh base.en

这将会下载一个名为 ggml-base.en.bin 的模型文件,并将其保存在 models 目录下。

步骤 4:编译项目

使用 CMake 来配置和编译项目。首先创建一个构建目录,并进入该目录:

mkdir build
cd build

然后,运行 CMake 进行配置:

cmake ..

最后,编译项目:

make
步骤 5:运行示例程序

编译完成后,你可以运行示例程序来测试安装是否成功。例如,使用以下命令来转录音频文件:

./main -f ../samples/jfk.wav

这将使用你下载的模型来转录 jfk.wav 文件中的语音内容。

总结

通过以上步骤,你已经成功安装并配置了 Whisper.cpp 项目。你可以根据需要进一步探索项目的其他功能和示例,或者将其集成到你自己的应用程序中。

whisper.cpp OpenAI 的 Whisper 模型在 C/C++ 中的移植版本。 whisper.cpp 项目地址: https://gitcode.com/gh_mirrors/wh/whisper.cpp

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

袁立童Margaret

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值