OpenAssistant LLaMa 30B SFT 6 模型安装与使用教程

OpenAssistant LLaMa 30B SFT 6 模型安装与使用教程

oasst-sft-6-llama-30b-xor oasst-sft-6-llama-30b-xor 项目地址: https://gitcode.com/hf_mirrors/ai-gitcode/oasst-sft-6-llama-30b-xor

引言

OpenAssistant LLaMa 30B SFT 6 是基于 Meta AI 的 LLaMA 模型进行训练得到的,它是一个大型语言模型,拥有 30B 个参数,能够进行自然语言处理任务,例如文本生成、问答、文本摘要等。本文将介绍如何安装和使用 OpenAssistant LLaMa 30B SFT 6 模型,并展示一些简单的示例。

安装前准备

系统和硬件要求

  • 操作系统:Linux (推荐 Ubuntu)
  • 硬件:GPU (推荐 NVIDIA)
  • Python 版本:3.10

必备软件和依赖项

  • Python 3.10
  • pip
  • Git
  • Transformers 库
  • PyTorch
  • sentencepiece
  • protobuf

安装步骤

  1. 创建 Python 虚拟环境

    首先,需要创建一个 Python 3.10 的虚拟环境,并激活它:

    python3.10 -m venv xor_venv
    source xor_venv/bin/activate
    
  2. 克隆 Transformers 库

    接下来,克隆 Transformers 库并切换到测试版本:

    git clone https://github.com/huggingface/transformers.git
    cd transformers
    git checkout d04ec99bec8a0b432fc03ed60cea9a1a20ebaf3c
    pip install .
    
  3. 安装依赖项

    然后,安装以下依赖项的指定版本:

    pip install torch==1.13.1 accelerate==0.18.0 sentencepiece==0.1.98 protobuf==3.20.1
    
  4. 获取 LLaMA 模型权重

    由于 Meta AI 对 LLaMA 模型的许可证限制,无法直接提供基于 LLaMA 的模型。因此,需要先获取 LLaMA 模型的原始权重,并将其添加到 llama 子目录中。如果无法获取 LLaMA 模型的原始权重,可以使用以下模型作为基础进行 XOR 转换:

    https://huggingface.co/elinas/llama-30b-hf-transformers-4.29
    
  5. 验证 LLaMA 模型权重

    确保 LLaMA 30B 检查点的 md5sum 与以下值匹配:

    f856e9d99c30855d6ead4d00cc3a5573  consolidated.00.pth
    d9dbfbea61309dc1e087f5081e98331a  consolidated.01.pth
    2b2bed47912ceb828c0a37aac4b99073  consolidated.02.pth
    ea0405cdb5bc638fee12de614f729ebc  consolidated.03.pth
    4babdbd05b8923226a9e9622492054b6  params.json
    
  6. 转换 LLaMA 模型权重

    在 Transformers 库的根目录下,运行以下命令进行 LLaMA 模型权重的转换:

    python src/transformers/models/llama/convert_llama_weights_to_hf.py --input_dir <input_path_llama_base>  --output_dir <output_path_llama30b_hf> --model_size 30B
    
  7. 验证转换后的权重

    在转换目标的目录下,运行以下命令进行 md5sum 校验:

    find . -type f -exec md5sum "{}" +
    

    确保转换后的权重的 md5sum 与以下值匹配:

    462a2d07f65776f27c0facfa2affb9f9  ./pytorch_model-00007-of-00007.bin
    e1dc8c48a65279fb1fbccff14562e6a3  ./pytorch_model-00003-of-00007.bin
    9cffb1aeba11b16da84b56abb773d099  ./pytorch_model-00001-of-00007.bin
    aee09e21813368c49baaece120125ae3  ./generation_config.json
    92754d6c6f291819ffc3dfcaf470f541  ./pytorch_model-00005-of-00007.bin
    3eddc6fc02c0172d38727e
    

oasst-sft-6-llama-30b-xor oasst-sft-6-llama-30b-xor 项目地址: https://gitcode.com/hf_mirrors/ai-gitcode/oasst-sft-6-llama-30b-xor

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

皮菱晶Jed

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值