一、llama-Factory:你的 Llama 模型 SFT 工厂
llama-Factory 是一个开源的、用户友好的工具,专门用于对 Llama 系列模型进行微调。它提供了简洁的界面和强大的功能,让你无需复杂的代码编写,就能轻松完成 Llama 模型的 SFT 任务,无论是 全参数微调 还是 参数高效的 LoRA 微调,llama-Factory 都能轻松搞定。
llama-Factory 的优势:
- 易于上手: 简洁的命令行界面,配置简单,即使是新手也能快速上手。
- 功能强大: 支持全参数 SFT 和 LoRA SFT,满足不同场景的需求。
- 高效便捷: 集成了常用的训练技巧,优化训练流程,提高效率。
- 开源免费: 开放源代码,可以自由使用和定制。
二、准备环境:搭建你的 SFT 工作站
在开始实践之前,我们需要先搭建好运行 llama-Factory 的环境。
1. 硬件需求:
- GPU: 建议使用 NVIDIA GPU,显存越大越好,不同模型大小对显存要求不同 (见经验信息)。
- 内存: 至少 16GB 内存。
- 硬盘: 足够的硬盘空间,用于存放模型、数据集和训练结果。
2. 软件环境:
- Python: 建议使用 Python 3.8 或更高版本。
- CUDA: 如果使用 NVIDIA GPU,需要安装 CUDA 驱动和 Toolkit。
- PyTorch: llama-Factory 基于 PyTorch 框架,需要安装 PyTorch。
3. 安装 llama-Factory:
使用 pip 命令即可轻松安装 llama-Factory:
pip install llama-factory
安装完成后,可以通过以下命令验证是否安装成功:
llama-factory --version
三、数据准备:打造你的专属 SFT 数据集
SFT 的效果很大程度上取决于数据集的质量。我们需要准备一个符合 (Instruction, Input, Output) 格式的数据集。
1. 数据格式:
llama-Factory 接受 JSON 格式的数据集。每个数据样本包含以下字段:
- instruction (必须): 指令描述,例如 “Summarize the following article”。
- input (可选): 输入内容,例如文章内容。
- output (必须): 期望的输出结果,例如文章摘要。
数据示例 (JSON 格式):
[
{
"instruction": "Summarize the following article.",
"input": "Large language models (LLMs) are a type of artificial intelligence (AI) algorithm that uses deep learning techniques and massively large data sets to understand, summarize, generate and predict new content. LLMs are based on a type of neural network architecture called a transformer network, and are pre-trained on massive quantities of text data.",
"output": "Large language models (LLMs) are AI algorithms using deep learning and large datasets to understand, summarize, generate, and predict content. They are based on transformer networks and pre-trained on vast text data."
},
{
"instruction"