行人重识别数据集之 Market1501 数据集

行人重识别数据集之 Market1501 数据集

【下载地址】行人重识别数据集之Market1501数据集分享 Market1501 数据集是行人重识别领域的重要资源,由6个摄像头捕获的1501个行人的图片组成。数据集分为训练集、测试集和query集,用于模型训练和评估。每个行人图片命名包含行人ID、摄像头编号、视频片段和帧信息。数据集结构包括训练图片、测试图片、手工标注图片和查询信息,用于模型训练和行人检索 【下载地址】行人重识别数据集之Market1501数据集分享 项目地址: https://gitcode.com/Resource-Bundle-Collection/704c9

简介

Market1501 数据集是行人重识别领域的重要资源,由6个摄像头捕获的1501个行人的图片组成。数据集分为训练集、测试集和query集,用于模型训练和评估。每个行人图片命名包含行人ID、摄像头编号、视频片段和帧信息。数据集结构包括训练图片、测试图片、手工标注图片和查询信息,用于模型训练和行人检索。

数据集结构

  • 训练集:包含751个行人,共计12936张图片。
  • 测试集:包含750个行人,共计19732张图片。
  • query集:包含750个行人,共计3368张图片。

数据集命名规则

以图片 0012_c4s1_000826_01.jpg 为例:

  • 0012:行人ID,Market1501 有 1501 个行人,故行人 ID 范围为 0001-1501。
  • c4:摄像头编号,表明图片采集自第4个摄像头,一共有 6 个摄像头。
  • s1:视频的第一个片段,一个视频包含若干个片段。
  • 000826:视频的第 826 帧图片,表明行人出现在该帧图片中。
  • 01:代表第 826 帧图片上的第一个检测框,DPM 检测器可能在一帧图片上生成多个检测框。

使用说明

  1. 训练模型:使用训练集进行模型训练。
  2. 测试模型:使用测试集和query集进行模型评估。
  3. 行人检索:利用query集进行行人检索任务。

注意事项

  • 数据集下载后,请确保遵守相关的许可和使用条款。
  • 使用数据集前,建议阅读官方提供的文档和指南,以获取更多关于数据集的详细信息和使用说明。

参考文献

Market1501 数据集由清华大学在2015年提出,论文标题为 "Person Re-Identification Meets Image Search"。

【下载地址】行人重识别数据集之Market1501数据集分享 Market1501 数据集是行人重识别领域的重要资源,由6个摄像头捕获的1501个行人的图片组成。数据集分为训练集、测试集和query集,用于模型训练和评估。每个行人图片命名包含行人ID、摄像头编号、视频片段和帧信息。数据集结构包括训练图片、测试图片、手工标注图片和查询信息,用于模型训练和行人检索 【下载地址】行人重识别数据集之Market1501数据集分享 项目地址: https://gitcode.com/Resource-Bundle-Collection/704c9

### 行人重识别数据集概述 #### Market1501 数据集 Market 1501行人重识别领域最常用的数据集之一。该数据集由论文《Person Re-Identification Meets Image Search》于2015年提出,其格式被广泛采用作为标准格式[^1]。 下载地址通常可以在研究者个人主页或GitHub项目页面找到。使用时需要注意文件结构遵循特定模式以便与其他工具兼容。具体来说,图像按照ID分类存储,并且提供训练/测试分割列表用于评估模型性能。 特征方面,Market1501 包含约3,2668张来自不同摄像头视角下的高质量RGB图象样本,覆盖了大约1,501个独立个体的身份信息。这些特性使得它非常适合用来开发和验证行人再识别算法的有效性和鲁棒性。 ```python import os def load_market1501(path_to_dataset): images_dir = os.path.join(path_to_dataset, 'bounding_box_train') identities = [] for root, _, files in os.walk(images_dir): for file_name in files: if not file_name.endswith('.jpg'): continue identity_id = int(file_name.split('_')[0]) if identity_id not in identities: identities.append(identity_id) return sorted(identities) ``` #### DukeMTMC 数据集 虽然未直接提及于此处提供的参考资料中,但是作为一个重要的补充资料,DukeMTMC是一个大型多目标跟踪与重识别数据库。此集合包含了超过702个身份,在六个不同的摄像机视点下拍摄得到近41,966帧画面以及相应标注。对于想要探索更大规模场景的应用而言非常有价值。 获取方式同样可以通过访问官方发布平台或是第三方托管站点来实现;而处理流程则建议参照原始作者给出的操作指南来进行预处理工作以确保实验条件的一致性。 #### CUHK03 数据集 CUHK03 数据集中存在两种主要版本——传统版(classic split)及新划分方案(new protocol)。前者基于随机选取原则创建而成,后者则是为了更贴近实际应用场景所设计的一种更为严格的评测机制[^2]。 除了上述提到的不同之处外,CUHK03 还提供了两种形式供使用者选择:一种是以MATLAB .mat 文件保存的压缩包`cuhk03_release.zip` ,另一种则是普通的图片档案打包成`.tar.gz` 。当选用后者时,可能还会遇到两个变体选项即普通版(CUHK03) 和带噪声标签的新协议版本 (CUHK03-NP)[^2]。 ```bash wget http://www.ee.cuhk.edu.hk/~xgwang/CUHK_identification.html -O cuhk03_download_page.html # 解压并整理所需资源... ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

黎芳桐Keaton

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值