- 博客(49)
- 资源 (2)
- 收藏
- 关注
原创 Linux下的Docker安装及常用命令速记
docker save 镜像名/镜像ID -o 镜像保存的名字 镜像保存的tag #保存镜像。桥接模式下,在外网看来,你是和宿主机具有相等地位的机器,可以分得与宿主机一个网段的IP。你的宿主机可以和客户机也就是虚拟机进行通信,但是与宿主机同网段的机器无法与客户机通信。实际表现为,你在虚拟机上网的时候,在外面看起来是你的宿主机在上网。虚拟机与主机处于不同网段,可访问外网,外网不可访问虚拟机。docker rmi -f 镜像名/镜像ID #删除镜像。宿主机和与宿主机同网段的机器都可以与客户机进行通信。
2023-07-05 20:52:55 411
原创 网络排错2:同一交换机下,PC到网关不通,PC跨网关访问不通
发现它的e0/0/1端口没有配置vlan,同时两个端口的vlan还写反了,因此用同Q1的方法,把vlan 168和vlan 169重新分配好。发现两个端口的网关分别配置在两个vlan中,down代表该vlan虚拟接口没激活。也试一下PC4,能不能连通网关,发现也是可以的。7.于是,测试一下PC之间的连通性。
2023-07-04 09:49:51 1470
原创 网络排错1:同一交换机下,同一子网内PC不通
发现交换机的g0/0/1端口配置为access类型,PVID=10,g0/0/2端口配置为默认,因此发现问题即g0/0/2端口没有应用vlan 10,导致无法通信,因此在端口中应用vlan 10。PC1和PC2无法通信,二者处于同一网段,并不需要考虑路由配置等三层问题,因此先用PC1去ping一下PC2,检测连通性。不连通,检查两台PC的ip设置与拓扑是否一致(查看基础配置),发现是一致的。,发现用这个命令看到的信息是端口对应vlan的配置情况。A1:display this #查看当前配置过的命令。
2023-07-02 11:43:58 2873
原创 C++自学血汗史(十):(数组形参)管理指针形参的常用技术
就是用一个标记来告诉函数,到这就是数组的结尾了。那么很明显,C风格字符串是一个典型的例子。当函数遇到空字符时,函数处理随即停止。给函数传递指向数组首元素和尾元素的指针,当他们相遇即结束。那么begin和end指针就是很好的例子。顾名思义了,给函数传过去一个带着数组大小的形参,以这个形参为循环终止条件就是了呗。end尾指针通常在对象的最后一个元素的后一个位置,即n+1。
2022-10-07 21:52:07 293
原创 机器学习总结(1--模型评估与选择)
如一个二分类问题的预测结果,无非4种情况:真正例(true positive)、假正例(false positive)、真反例(true negative)与假反例(false negative),前面真假代表预测结果,后面正反代表预测对了还是错了。14.性能度量(performance measure):对学习器的泛化性能评估,不仅需要有效的实验估计方法,还需要有衡量模型泛化能力的评价标准,即之。9.留出法(hold-out):数据集划分为两个互斥的集合,一个作为训练集S,另一个作为测试集T。
2022-10-04 10:32:37 409
转载 C++自学血汗史(八):size_type类型到底是啥
使用int变量的问题是:有些机器上的int变量的表示范围太小,甚至无法存储实际并不长的string对象。,该文件是C标准库的头文件stddef.h的C++版本.它是一个与机器相关的unsigned类型,其大小足以保证存储内存中对象的大小。,保存一个string对象的size的最安全的方法就是使用标准库类型string::size_type().一点注意:虽然是在学习标准库string的时候巧遇了size_type类型,但是,其实。类型,该类型用来存储任何两个迭代器对象间的距离,所以是signed类型的。
2022-09-29 14:57:15 1891 1
原创 C++自学血汗史(七):基于范围的for循环与vector小心注意
今天的标志性低级错误:把基于范围的for循环中的i想成下标,它应该是类似于python中的for i in range的用法,所以如果再次在cout
2022-09-28 17:18:35 552
原创 C++自学血汗史(六):vector添加元素等未定界对象的键盘输入回车结束
可以看到,当想用回车结束时,和c语言中的getchar()函数很相似,c++用cin.get()来获取我们想干的坏事,就比如例子中遇到回车('\n)结束程序。特别说明,c++中的vector一般都不设置大小边界的,也就是以空为开始情况的情况很常见。直接上一个示例代码,是往一个空的vector ivec中添加元素然后输出的代码。PS:转载注明出处,如有侵权请联系作者删除。
2022-09-28 15:52:37 671
原创 C++自学血汗史(五):加深印象之默认初始化
我们在定义变量时如果没有指定初值,那么变量就被默认初始化(default initialized),此时变量被赋予了“默认值”,那么此时这个默认值到底是个啥呢?如果是内置类型的变量未被显式初始化,那么它的值由定义的位置决定。如果它定义于任何的函数体之外,那么就初始化为0。这个0我认为理解成0,不如就理解为空,对,就是那个色即是空空即是色的空,下面总结一下这个色不对这个空。1.数值类型int,float,double,全部为0.2.char类型,默认初始化为‘\0’。3.bool类型,默认
2022-09-26 14:07:38 321
原创 Pytorch深度学习随手记(6)深度学习基础知识快速了解之线性回归的基本要素
损失函数解的形式有两种,一种叫解析解(analytical solution),另一种叫数值解(numerical solution)。前者可以直接通过公式表达式计算出结果,例如线性回归和平房回归均属于此类。然鹅在深度学习模型中用到的基本都是数值解,即只能通过优化算法进行有限次的迭代来尽可能降低损失函数的值。我们常说的小批量随机梯度下降(mini-batch stochastic gradient descent),它的算法是通过先选取一组模型的参数初始值,比如随机选取,接下来对参数疯狂迭代,让每次迭代
2022-09-26 13:25:44 329
原创 力扣随心刷C++随手记(1):旋转数字(788)
如果一个数的每位数字被旋转以后仍然还是一个数字, 则这个数是有效的。因此,我们可以枚举 [1, n][1,n] 的每一个正整数,并以此判断它们是否满足上述要求即可。在下面的代码中,我们用 \textit{valid}valid 记录数是否满足第一条要求,\textit{diff}diff 记录数是否满足第二条要求。我们称一个数 X 为好数, 如果它的每位数字逐个地被旋转 180 度后,我们仍可以得到一个有效的,且和 X 不同的数。在[1, 10]中有四个好数: 2, 5, 6, 9。方法一:枚举每一个数。
2022-09-25 22:35:46 749
原创 C++自学血汗史(三):请注意C++与C的字符串不同问题
在C语言中,并没有字符串这个数据类型,有的是字符类型(char),因此C是使用字符数组来保存字符串。C字符串实际上就是一个以null('\0')字符结尾的字符数组,null字符表示字符串的结束。需要注意的是:只有以null字符结尾的字符数组才是C字符串,否则只是一般的C字符数组。出于以上原因,我们在C语言字符的学习过程中,对这个'\0'问题小心翼翼,常常为了那么一个1而缓缓思考。在C++中,字符串被封装成了一种数据类型string,可以直接声明变量并进行赋值等字符串操作。这就有意思了,我们可以像int,
2022-09-25 16:03:11 161
原创 C++自学血汗史(二):开发一个C++语言的步骤解析
把翻译成的汇编语言再处理一下变成目标代码,也就是让机器执行的二进制文件,把这些文件和库文件链接起来,就能干活了。给了你组件,又给了你图纸,你去干活吧。我的看法,所谓编译即把你编写好的代码翻译成编译语言的操作,目的是翻译一下,计算机真的不会C++。开发一个C++语言的步骤通常包括编辑、编译、链接、运行和调试。出bug了你得改啊,结果不满意你得改啊,这就是后续的调整咯。运行就是干完活,给程序员sama看一下结果呗,听皇上吩咐。这句话记住的同时,还要简单了解一下这些词到底是嘎哈的。你在写代码,你就是在编辑。
2022-09-25 11:30:11 228
原创 C++自学血汗史(一):const与指针的结合用法
指针的特点:指针有两个值,一个是其自身的值(即所指变量的地址),一个是它所指向的值(指向的变量是何许人也),所谓指针的指向就是指针自身的值,改变指向就是改变地址。可以看出,顶层const其实不只是可以用来修饰指针,它可以用于表示任意的对象是常量,而底层const则与指针和引用等复合类型的基本类型有关。const限定符:使用关键字const对变量的类型做限定,如果我们希望。PS:转载注明出处,如有侵权请联系作者删除。4.全都有const。这是两个独立的问题。
2022-09-25 10:05:00 106
原创 Pytorch深度学习随手记(5)术语
1.backbone:主干网络,网络用于提取特征信息的部分。2.head:是获取网络输出内容的网络,利用之前提取的特征做出预测。3.neck:放在backbone和head之间的,是为了更好的利用backbone提取的特征4.bottleneck:瓶颈,通常指的是网络输出的维度比输入的小了许多,就像脖子一样5.GAP:Global Average Pool,全局平均池化,将某个通道的特征取平均值。6.embedding:对复杂的数据进行自动特征抽取,并将特征表示为向量的过程称为“嵌入”。
2021-11-22 15:57:07 3821
转载 21天活动Zyf打卡第二十一天Promise9913,完美矩形
方法一:哈希表精确覆盖意味着:矩形区域中不能有空缺,即矩形区域的面积等于所有矩形的面积之和;矩形区域中不能有相交区域。我们需要一个统计量来判定是否存在相交区域。由于精确覆盖意味着矩形的边和顶点会重合在一起,我们不妨统计每个矩形顶点的出现次数。同一个位置至多只能存在四个顶点,在满足该条件的前提下,如果矩形区域中有相交区域,这要么导致矩形区域四角的顶点出现不止一次,要么导致非四角的顶点存在出现一次或三次的顶点;因此要满足精确覆盖,除了要满足矩形区域的面积等于所有矩形的面积之和,还要满足矩...
2021-11-16 18:04:35 132
转载 21天活动Zyf打卡第二十天Promise9913,灯泡开关
class Solution: def bulbSwitch(self, n: int) -> int: return int(sqrt(n + 0.5))
2021-11-15 09:45:47 117
转载 21天活动Zyf打卡第十九天Promise9913,键值映射
class MapSum: def __init__(self): self.map = {} def insert(self, key: str, val: int) -> None: self.map[key] = val def sum(self, prefix: str) -> int: res = 0 for key,val in self.map.items(): ...
2021-11-14 13:46:11 148
转载 21天活动Zyf打卡第十八天Promise9913,检测大写字母
我们定义,在以下情况时,单词的大写用法是正确的:全部字母都是大写,比如 "USA" 。单词中所有字母都不是大写,比如 "leetcode" 。如果单词不只含有一个字母,只有首字母大写, 比如 "Google" 。给你一个字符串 word 。如果大写用法正确,返回 true ;否则,返回 false 。示例 1:输入:word = "USA"输出:true示例 2:输入:word = "FlaG"输出:false方法一:根据题目要求实现思路和算法根据题目要求,若单词的大写
2021-11-13 10:46:57 139
转载 21天活动Zyf打卡第十七天Promise9913,猜数字大小 II
class Solution: def getMoneyAmount(self, n: int) -> int: f = [[0] * (n + 1) for _ in range(n + 1)] for i in range(n - 1, 0, -1): for j in range(i + 1, n + 1): f[i][j] = min(k + max(f[i][k - 1], f[k + ...
2021-11-12 09:46:58 131
转载 21天活动Zyf打卡第十六天Promise9913,K个逆序对数组
提交结果 执行用时 内存消耗 语言 提交时间 备注 通过 364 ms 15 MB Python3 2021/11/11 09:10 class Solution: def kInversePairs(self, n: int, k: int) -> int: mod = 10**9 + 7 f = [1] + [0] * k ..
2021-11-11 09:13:25 125
转载 21天活动Zyf打卡第十五天Promise9913,提莫攻击
提交结果 执行用时 内存消耗 语言 提交时间 备注 通过 56 ms 15.8 MB Python3 2021/11/10 09:28 class Solution: def findPoisonedDuration(self, timeSeries: List[int], duration: int) -> int: ans, expired = 0, 0 for
2021-11-10 09:29:23 101
转载 21天活动Zyf打卡第十四天Promise9913,祖玛游戏
提交结果 执行用时 内存消耗 语言 提交时间 备注 通过 756 ms 138.3 MB C++ 2021/11/09 14:18 class Solution {public: unordered_map<char, int> mp; unordered_map<string, bool> vis; char color[5] = {'R', 'Y', 'B',
2021-11-09 14:20:57 122
转载 21天活动Zyf打卡第十三天Promise9913,猜数字游戏
提交结果 执行用时 内存消耗 语言 提交时间 备注 通过 36 ms 14.8 MB Python3 2021/11/08 09:22
2021-11-08 09:24:53 134
转载 21天活动Zyf打卡第十二天Promise9913,范围求和 II
提交结果 执行用时 内存消耗 语言 提交时间 备注 通过 36 ms 15.5 MB Python3 2021/11/07 09:58 题目描述:解题思路:class Solution: def maxCount(self, m: int, n: int, ops: List[List[int]]) -> int: mina, minb = m, n for.
2021-11-07 10:01:13 120
转载 21天活动Zyf打卡第十一天Promise9913,丢失的数字
提交结果 执行用时 内存消耗 语言 提交时间 备注 通过 60 ms 15.7 MB Python3 2021/11/06 14:36 题目描述:给定一个包含 [0, n]中n个数的数组 nums ,找出 [0, n] 这个范围内没有出现在数组中的那个数。示例 1:输入:nums = [3,0,1]输出:2解释:n = 3,因为有 3 个数字,所以所有的数字都在范围 [0,3] 内。2 是丢失的数...
2021-11-06 14:38:32 112
转载 21天活动Zyf打卡第十天Promise9913,最长定差子序列
提交结果 执行用时 内存消耗 语言 提交时间 备注 通过 124 ms 25 MB Python3 2021/11/05 10:10 题目描述:给你一个整数数组 arr 和一个整数 difference,请你找出并返回 arr 中最长等差子序列的长度,该子序列中相邻元素之间的差等于 difference 。子序列 是指在不改变其余元素顺序的情况下,通过删除一些元素或不删除任何元素而从 arr 派生出来的序列。示例 1:输入
2021-11-05 10:17:36 111
转载 21天活动Zyf打卡第九天Promise9913,有效的完全平方数
提交结果 执行用时 内存消耗 语言 提交时间 备注 通过 24 ms 14.9 MB Python3 2021/11/04 09:32 题目描述:给定一个 正整数 num ,编写一个函数,如果 num 是一个完全平方数,则返回 true ,否则返回 false 。进阶:不要 使用任何内置的库函数,如sqrt 。示例 1:输入:num = 16输出:true示例 2:输入:num = 14输..
2021-11-04 09:35:12 110
原创 Pytorch深度学习随手记(4)plt.figure()的调教
figure(num=None, figsize=None, dpi=None, facecolor=None, edgecolor=None, frameon=True)num:图像编号或名称,数字为编号 ,字符串为名称;figsize:指定figure的宽和高,单位为英寸;dpi参数指定绘图对象的分辨率,即每英寸多少个像素,缺省值为80;facecolor:背景颜色;edgecolor:边框颜色;frameon:是否显示边框。展示:...
2021-11-03 15:53:43 330
原创 Pytorch深度学习随手记(3)np.argwhere()用法
class cangjingkong(nn.Module): def __init__(self, class_num=751, droprate=0.5, stride=2):class_num:分类类数drop_rate: 一个浮点数,取值范围为[0.0,1.0],表示dropout 的比例,默认为1stride:步长
2021-11-03 11:08:15 938
转载 21天活动Zyf打卡第八天Promise9913,接雨水 II
提交结果 执行用时 内存消耗 语言 提交时间 备注 通过 260 ms 16.4 MB Python3 2021/11/03 10:28 问题描述:输入: heightMap = [[1,4,3,1,3,2],[3,2,1,3,2,4],[2,3,3,2,3,1]]输出: 4解释: 下雨后,雨水将会被上图蓝色的方块中。总的接雨水量为1+2+1=4。解题思路:class Solution: .
2021-11-03 10:32:34 116
原创 torch.max()函数参数说明
形式: torch.max(input, dim)函数的输入:input:input是分类函数输出的tensordim:dim是max函数索引的维度0/1,0是每列的最大值,1是每行的最大值函数的输出:函数会返回两个tensor,第一个tensor是每行的最大值;第二个tensor是每行最大值的索引。接下来 来一个简单测试:...
2021-11-02 16:04:37 432
原创 resnet50原始网络,从头debug一次,源码解读
FBI warning :pycharm直接复写代码 ctrl+d本文目的不在于让你学会各种大小数据的变化,而在于体会resnet执行的流程,大白话解说,读不懂的见谅!废话少说,直接上最重要的两个图片图:唱跳rap用于和代码debug对照,接下来直接开始内参数(瓶颈层,[3,4,6,3]对应唱跳rapx3x4x6x3,我个人理解为每个块内的遍历次数,分类数)从括号里外的顺序开始,先跳转到resnet类inplane 输入通道数,plane 输出通道数...
2021-11-02 11:44:58 3121
转载 21天活动Zyf打卡第七天Promise9913,删除链表中的结点
提交结果 执行用时 内存消耗 语言 提交时间 备注 通过 44 ms 15.5 MB Python3 2021/11/02 09:58 问题描述:请编写一个函数,用于 删除单链表中某个特定节点 。在设计函数时需要注意,你无法访问链表的头节点head ,只能直接访问 要被删除的节点 。题目数据保证需要删除的节点 不是末尾节点 。输入:head = [4,5,1,9], node = 5输出:[4,1,9]解.
2021-11-02 10:34:40 89
原创 Pytorch深度学习随手记(2)pytorch中nn.AdaptiveAvgPool2d() 与 nn.AvgPool2d() 的区别
简单概括:都是做二维的平均池化但它们关注的参数不一样。nn.AdaptiveAvgPool2d(output_size) #参数指定输出固定尺寸自适应就是 这个意思就是你在下面休息它会自己动,所以给定输出尺寸如(H,W)就行nn.AvgPool2d(kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True)#参数指定 核大小,步长,填充,F向下取整(T向上取整),计算时是否包含pad的0.
2021-11-01 16:47:53 813
原创 Pytorch深度学习随手记(1)x = torch.squeeze(x)
squeeze的用法:对数据的维度进行压缩或者解压torch.squeeze() 对数据的维度进行压缩squeeze(a)就是将a中所有为1的维度删掉。a.squeeze(N) 就是去掉a中指定的维数为N的维度。b=torch.squeeze(a,N) :b=a中去掉指定的N维的数据。torch.unsqueeze()对数据维度进行扩充a.unsqueeze(N) 就是在a中指定位置N加上一个维数为1的维度。...
2021-11-01 16:36:30 535
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人