行人重识别(5)——行人重识别Market1501数据集介绍

!转载请注明原文地址!——东方旅行者

更多行人重识别文章移步我的专栏:行人重识别专栏

Market1501数据集

一、数据集简介

Market-1501数据集在清华大学校园中采集,夏天拍摄,在2015年构建并公开。它包括由6个摄像头(其中5个高清摄像头和1个低清摄像头)拍摄的1501个行人的32217张图片。图片分辨率统一为128X64。每个行人至少由2个摄像头捕获到,并且在一个摄像头中可能具有多张图像。
训练集bounding_box_train有751人,包含12,936张图像,平均每个人有17.2张训练数据;
测试集bounding_box_test有750人,包含19,732张图像,平均每个人有26.3张测试数据;
查询集query有3368张查询图像。
该数据集提供的固定数量的训练集和测试集均可以在single-shot或multi-shot测试设置下使用。

二、目录结构及数据命名规则

Market-1501-v15.09.15
  ├── bounding_box_test
       ├── 0000_c1s1_000151_01.jpg
       ├── 0000_c1s1_000376_03.jpg
  ├── bounding_box_train
       ├── 0002_c1s1_000451_03.jpg
       ├── 0002_c1s1_000551_01.jpg
  ├── gt_bbox
       ├── 0001_c1s1_001051_00.jpg
       ├── 0001_c1s1_002301_00.jpg
  ├── gt_query
       ├── 0001_c1s1_001051_00_good.mat
       ├── 0001_c1s1_001051_00_junk.mat
  ├── query
       ├── 0001_c1s1_001051_00.jpg
       ├── 0001_c2s1_000301_00.jpg
  └── readme.txt

1.目录介绍

  1. “bounding_box_test”——测试集的 750 人,包含 19,732 张图像,前缀为 0000 表示在提取这 750 人的过程中DPM检测错的图(可能与query是同一个人),-1 表示检测出来其他人的图(不在这 750 人中)
  2. “bounding_box_train”——训练集的 751 人,包含 12,936 张图像
  3. “query”——为 750 人在每个摄像头中随机选择一张图像作为query,因此一个人的query最多有 6 个,共有 3,368 张图像
  4. “gt_query”——matlab格式,用于判断一个query的哪些图片是好的匹配(同一个人不同摄像头的图像)和不好的匹配(同一个人同一个摄像头的图像或非同一个人的图像)
  5. “gt_bbox”——手工标注的bounding box,用于判断DPM检测的bounding box是不是一个好的box

2.数据文件命名规则

以 0001_c1s1_000151_01.jpg 为例

  1. 0001 表示每个人的标签编号,从0001到1501;
  2. c1 表示第一个摄像头(camera1),共有6个摄像头;
  3. s1 表示第一个录像片段(sequece1),每个摄像机都有数个录像段;
  4. 000151 表示 c1s1 的第000151帧图片,视频帧率25fps;
  5. 01 表示 c1s1_001051 这一帧上的第1个检测框,由于采用DPM检测器,对于每一帧上的行人可能会框出好几个bbox。00 表示手工标注框

三、数据集下载地址

百度网盘:https://pan.baidu.com/s/1ntIi2Op

四、参考文献

Zheng L, Shen L, Tian L, et al. Scalable person re-identification: A benchmark[C]. ICCV, 2015: 1116-1124.

### 如何下载 Market-1501 数据集 Market-1501 是一个广泛应用于行人重识别(ReID)研究的公开数据集,包含超过 32,000 幅行人图像以及超过 1501 个不同的行人身份[^2]。为了获取此数据集,可以按照以下方法操作: #### 官方网站或存储库链接 通常情况下,官方会提供数据集的下载页面或者镜像站点。对于 Market-1501 数据集而言,可以通过访问其原始发布者的资源页面来找到下载入口。具体来说,可以从以下地址尝试下载: - **官方网站**: 如果存在官方主页,则优先从官网获取最新版本的数据集。 - **第三方托管平台**: 像 GitHub 或 GitCode 这样的开源社区也可能维护着该数据集的副本。例如,在引用中提到过的一个可能的下载源为 `https://gitcode.com/Resource-Bundle-Collection/31953`。 #### 下载前注意事项 在正式开始之前,请注意以下几点事项以确保顺利获得所需资料并合理合法地使用它们: 1. 验证权限:确认自己具备必要的授权或许可才能下载这些材料; 2. 查看说明文档:仔细阅读随附文件中的README或其他形式的帮助指南以便了解结构布局及用途介绍等内容; 3. 准备足够的磁盘空间:考虑到整个压缩包大小可能会达到几百MB甚至GB级别以上,因此建议提前预留好充足的储存容量; #### 使用脚本自动化完成任务 如果手动方式较为繁琐耗时的话,还可以考虑编写简单的Python程序实现自动化的批量抓取过程。下面给出一段示范代码供参考学习之用: ```python import os import urllib.request def download_dataset(url, save_path): """Download the dataset from given URL.""" if not os.path.exists(save_path): print(f"Downloading {url} to {save_path}") try: urllib.request.urlretrieve(url, filename=save_path) print("Download completed successfully.") except Exception as e: print(f"Error occurred during downloading: {e}") if __name__ == "__main__": url = "http://www.liangzheng.org.cn/download/data/market1501/Market-1501-v15.09.15.zip" local_filename = "./market1501.zip" download_dataset(url=url, save_path=local_filename) ``` 上述脚本定义了一个函数用于接收远程服务器上的目标路径参数并将结果保存至本地指定目录下。运行这段代码之后即可轻松取得完整的ZIP档案格式的Market-1501数据集合了! ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值