CTGAN:用于生成合成表格数据的条件GAN

CTGAN:用于生成合成表格数据的条件GAN

【下载地址】CTGAN用于生成合成表格数据的条件GAN CTGAN是一款专为生成合成表格数据而设计的深度学习工具,基于条件生成对抗网络(GAN)技术。它能够从真实数据中学习分布特征,生成高保真度的合成数据,适用于数据合成和隐私保护等场景。项目还集成了TVAE模型,通过变分自编码器方法实现类似功能。无论是研究还是应用,CTGAN都提供了高效、灵活的解决方案,帮助用户在保护数据隐私的同时,生成高质量的数据集。安装简便,支持Python 3.6及以上版本,是数据科学家和研究人员的理想选择。 【下载地址】CTGAN用于生成合成表格数据的条件GAN 项目地址: https://gitcode.com/Universal-Tool/27499

简介

CTGAN(Conditional Tabular GAN)是一个基于深度学习的合成数据生成器,专门用于生成单个表格数据的合成克隆。它能够从真实数据中学习数据的分布特征,并生成高保真度的合成数据。本项目汇集了CTGAN和TVAE模型的论文实现,适用于需要进行数据合成和隐私保护的各种场景。

安装要求

CTGAN已在Python 3.6和3.7版本上进行开发和测试。以下为推荐的安装方法:

  • 使用pip安装:

    pip install ctgan
    
  • 使用conda安装:

    conda install -c sdv-dev -c pytorch -c conda-forge ctgan
    

使用范例

请注意,如果您刚开始使用合成数据,建议您使用SDV库,该库提供了更全面的功能支持。

在使用CTGAN时,请遵循以下警告:

⚠️ 警告:请确保您已充分理解合成数据的生成过程及其应用场景,以确保数据的准确性和安全性。

模型简介

CTGAN

CTGAN是一种条件生成对抗网络,适用于表格数据的合成。它通过学习数据的条件分布,生成与原始数据高度相似的合成数据。

TVAE

TVAE(Truncated Variational Autoencoder)是另一种适用于表格数据合成的深度学习模型。它通过变分自编码器的方法,生成具有类似原始数据分布的合成数据。

用户指南

为了更好地了解CTGAN和TVAE模型的使用方法和特性,请查阅相应的用户指南,以获取详细的操作说明和案例解析。

【下载地址】CTGAN用于生成合成表格数据的条件GAN CTGAN是一款专为生成合成表格数据而设计的深度学习工具,基于条件生成对抗网络(GAN)技术。它能够从真实数据中学习分布特征,生成高保真度的合成数据,适用于数据合成和隐私保护等场景。项目还集成了TVAE模型,通过变分自编码器方法实现类似功能。无论是研究还是应用,CTGAN都提供了高效、灵活的解决方案,帮助用户在保护数据隐私的同时,生成高质量的数据集。安装简便,支持Python 3.6及以上版本,是数据科学家和研究人员的理想选择。 【下载地址】CTGAN用于生成合成表格数据的条件GAN 项目地址: https://gitcode.com/Universal-Tool/27499

数据集介绍:野生动物目标检测数据集 一、基础信息 数据集名称:野生动物目标检测数据集 图片数量: - 训练集:11,787张图片 - 验证集:643张图片 - 测试集:431张图片 总计:12,861张真实场景图片 分类类别: - Elephant(象):陆生大型哺乳动物,包含多种自然环境中的活动姿态。 - Bear(熊):涵盖不同种类的熊科动物,包括静态及运动状态。 - Cheetah(猎豹):强调高速运动状态下的动态捕捉样本。 - Deer(鹿):包含林地和草原环境中的鹿群及个体样本。 - Fox(狐):涵盖多种狐狸品种的多样化行为模式。 标注格式: YOLO格式,包含标准化的归一化坐标标注,可直接适配YOLOv5/v7/v8等主流检测框架。 数据特性: 涵盖航拍、地面视角等多角度拍摄的野生动物图像,包含昼夜不同光照条件下的样本。 二、适用场景 生态监测系统开发: 支持构建自然保护区智能监测系统,实时检测野生动物活动轨迹并统计种群分布。 自动驾驶环境感知: 用于训练车辆视觉系统识别道路周边野生动物的能力,提升行车安全系数。 野生动物研究分析: 提供动物行为学研究的结构化数据支撑,支持物种活动模式分析与栖息地研究。 安防监控系统升级: 适用于农场、林区等场景的智能安防系统开发,精准识别潜在动物威胁。 三、数据集优势 多物种覆盖: 包含5类高关注度野生动物,覆盖陆地生态系统的关键指示物种。 场景多样性: 数据采集涵盖丛林、草原、山地等多种自然生境,增强模型泛化能力。 标注专业性: 经动物学专家校验的精准边界框标注,确保目标定位与分类准确性。 任务适配性: 原生YOLO格式支持快速迁移至目标检测、行为分析、密度估计等衍生任务。 规模优势: 超万级标注样本量,有效支撑深度神经网络的特征学习需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

龚咏澜Adelaide

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值