竞争性自适应重加权算法(CARS)资源文件介绍

竞争性自适应重加权算法(CARS)资源文件介绍

【下载地址】竞争性自适应重加权算法CARS资源文件介绍 竞争性自适应重加权算法(CARS)是一种高效的Matlab特征变量提取方法,专为模式识别中的分类与回归任务设计。该算法基于自适应重加权采样(ARS)技术,通过动态调整样本权重,筛选出PLS模型中回归系数较大的波长点,并移除不重要的波长点。通过交互验证,选取RMSECV最低的子集,确保最优变量组合的稳健性。CARS算法在数据降维、变量筛选以及分类与回归分析中表现出色,适用于学术研究和数据分析学习,能显著提升模式识别的准确性和效率。 【下载地址】竞争性自适应重加权算法CARS资源文件介绍 项目地址: https://gitcode.com/Universal-Tool/9b981

此仓库包含了一个Matlab模式识别(包括分类与回归)特征变量提取方法的相关资源——竞争性自适应重加权(CARS)算法。CARS算法基于自适应重加权采样(ARS)技术,专注于从PLS(偏最小二乘)模型中筛选出回归系数绝对值较大的波长点,并移除权重较小的波长点。通过交互验证,选取RMSECV(交叉验证均方根误差)最低的子集,从而有效寻找出最优变量组合。

算法特点

  • 自适应重加权采样:ARS技术能够动态调整样本权重,强化重要性高的波长点,弱化或不考虑不重要的波长点。
  • PLS模型回归系数:利用PLS模型中回归系数的大小,作为选择波长点的重要依据。
  • 交互验证:通过交互验证的方式,确保选取的波长点子集在实际应用中的稳健性。
  • 最优变量组合:最终确定的最优变量组合有助于提升模式识别的准确性和效率。

适用场景

  • 模式识别中的特征变量提取
  • 数据降维与变量筛选
  • 分类与回归分析

注意事项

在使用此资源时,请确保您熟悉Matlab环境,并对PLS模型以及ARS技术有基本的了解。此资源适用于学术研究以及数据分析学习,未经授权不得用于商业用途。

我们希望这个资源能够帮助您在模式识别领域取得更好的研究成果。祝您使用愉快!

【下载地址】竞争性自适应重加权算法CARS资源文件介绍 竞争性自适应重加权算法(CARS)是一种高效的Matlab特征变量提取方法,专为模式识别中的分类与回归任务设计。该算法基于自适应重加权采样(ARS)技术,通过动态调整样本权重,筛选出PLS模型中回归系数较大的波长点,并移除不重要的波长点。通过交互验证,选取RMSECV最低的子集,确保最优变量组合的稳健性。CARS算法在数据降维、变量筛选以及分类与回归分析中表现出色,适用于学术研究和数据分析学习,能显著提升模式识别的准确性和效率。 【下载地址】竞争性自适应重加权算法CARS资源文件介绍 项目地址: https://gitcode.com/Universal-Tool/9b981

### 高光谱特征波长选择算法CARS原理 #### 定义与背景 高光谱特征波段选择对于提升光谱建模的质量至关重要。CARS(Competitive Adaptive Reweighted Sampling),即竞争自适应加权采样,作为一种高效的特征波段选择方法,在众多领域得到了广泛应用[^1]。 #### 工作机制 CARS基于遗传算法的思想设计而成,旨在通过迭代过程逐步优化选出最具代表性的波段组合。具体来说: - **初始阶段**:随机选取一组样本作为起始群体; - **评估环节**:利用特定评价指标衡量当前选中波段集的表现效果;此步骤通常涉及构建回归或分类模型来测试不同波段配置下的性能差异; - **更新操作**:依据表现好坏调整各候选波段的重要性权重,并据此重新抽样形成新一代个体群; - **终止条件**:当达到预设的最大循环次数或者连续多轮无显著改进时停止搜索流程。 整个过程中,CARS不断缩小关注范围直至找到最优解,从而有效提高了最终选定波段集合的信息浓缩程度和区分能力。 #### 实现优势 相比其他传统手段,CARS具备如下优点: - 更好地平衡了探索未知空间与开发已知优质区域之间的关系; - 能够自动识别并剔除冗余甚至干扰性质的数据维度; - 显著增强了后续分析任务如预测建模等方面的稳定性和准确性。 ```matlab % MATLAB代码片段展示如何调用CARS函数执行特征波段选择 function selected_bands = cars_algorithm(spectra_data, response_variable) % spectra_data - 输入的光谱矩阵 % response_variable - 对应的目标变量向量 options = statset('MaxIter', 50); % 设置最大迭代次数为50次 [fs, history] = stepwisefit(spectra_data, response_variable, 'PEnter', 0.05, ... 'PRemove', 0.1, 'Method', 'forward', 'Options', options); selected_bands = find(fs ~= 0); % 获取入选波段索引 end ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

凌蜜爽Just

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值