MiDaS: 深度估计的开源之旅

MiDaS: 深度估计的开源之旅

MiDaS MiDaS 项目地址: https://gitcode.com/gh_mirrors/mid/MiDaS

项目基础介绍与编程语言

MiDaS(Mixed Datasets for Zero-shot Cross-dataset Transfer)是Intel labs开源的一个项目,专注于实现鲁棒性的单目深度估计。该项目基于深度学习技术,特别是Transformer和卷积神经网络(CNN),用以从单一图像中精确计算场景的深度信息。项目主要采用Python进行开发,并利用PyTorch作为其核心深度学习框架。

核心功能

MiDaS提供了多种模型,旨在适应不同的性能需求和应用场景。它的核心亮点包括但不限于:

  • 零样本跨数据集迁移能力:训练模型能够在未见过的数据集上表现良好,无需特定场景的再训练。
  • 多数据集融合训练:通过在多达12个不同数据集上进行训练,提高了模型的泛化能力。
  • 广泛支持的模型变体:从高精度的DPT_BERT_Large到适用于嵌入式设备的小型模型,满足不同硬件和应用的需求。
  • 易用性:用户可以通过简单的命令行接口或集成进自己的应用来生成深度图。

最近更新的功能

尽管具体的最近更新细节需参照项目的Git提交记录,但可以预期的是,MiDaS的更新可能涉及以下几个方面:

  • 模型优化:引入了新的预训练模型版本,如DPT_BEiT或DPT_Swin变种,这些通常会带来更高的效率或更佳的准确性。
  • 性能增强:优化推理速度,尤其是在边缘设备上的执行效率。
  • 兼容性和稳定性提升:确保项目与最新版本的PyTorch和其他依赖库兼容,并修复已知bug。
  • 文档和示例更新:提供更清晰的说明文档和新的示例代码,便于开发者快速上手。

请注意,具体更新内容请参考仓库中的Release Notes或直接查看Git提交历史。

MiDaS MiDaS 项目地址: https://gitcode.com/gh_mirrors/mid/MiDaS

### MiDaS 深度估计 使用方法及教程 #### 项目安装与依赖设置 为了使用 MiDaS 进行深度估计,需先准备合适的开发环境并按照官方指南完成必要的软件包安装。确保 Python 版本兼容,并利用 pip 工具来获取所需的库文件[^1]。 ```bash pip install torch torchvision midas ``` #### 数据集准备 MiDaS 支持多种数据源输入,在实际应用前可能需要下载特定的数据集用于训练或验证模型性能。对于新手来说,可以直接采用预训练好的权重来进行简单的预测操作而无需额外收集样本集合[^2]。 #### 配置参数调整 深入理解项目的配置选项有助于优化运行效果。通常这些设定保存在一个 JSON 或 YAML 文件里,里面包含了诸如网络架构定义、超参调节等重要信息。熟悉这部分内容能够帮助更好地控制实验过程中的变量因素。 #### 执行推理流程 当一切就绪之后就可以调用 API 接口执行具体的推断任务了。下面给出了一段简化的Python脚本作为例子展示如何加载模型并对单张图片实施处理: ```python import cv2 import torch from midas.model_loader import default_models, load_model model_path = "weights/model.pt" device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model, transform, net_w, net_h = load_model(device, model_path) def estimate_depth(image_path): img = cv2.imread(image_path) input_batch = transform(img).to(device) with torch.no_grad(): prediction = model(input_batch) output = prediction.squeeze().cpu().numpy() return output ``` 此代码片段展示了基本的工作流:读取图像 -> 应用变换 -> 前向传播得到结果 -> 将 tensor 转换回 numpy 数组以便后续可视化或其他用途。 #### 结果分析与评估 获得深度图后可以进一步对其进行量化评价或是与其他真实世界测量值对比检验准确性。此外还可以探索不同场景下表现差异以及尝试改进策略提升整体质量[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

水钦朝Gabrielle

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值