SO-VITS-SVC 5.0 安装与配置完全指南

SO-VITS-SVC 5.0 安装与配置完全指南

so-vits-svc-5.0 Core Engine of Singing Voice Conversion & Singing Voice Clone so-vits-svc-5.0 项目地址: https://gitcode.com/gh_mirrors/so/so-vits-svc-5.0

项目基础介绍与编程语言

SO-VITS-SVC 5.0 是一个基于变分推理与对抗学习的端到端歌唱声音转换核心引擎。它利用了VITS(Variational Inference for Text-to-Speech)的技术,并专注于简化歌唱声音转换及克隆的过程。本项目面向深度学习初学者,需具备Python和PyTorch的基础知识。值得注意的是,尽管该工具强大,但它不支持实时语音转换。

主要编程语言: Python

关键依赖框架: PyTorch, Whisper, BigVGAN, Hubert, CrePE等。

关键技术和框架

  • VITS (Variational Inference for Text-to-Speech): 提供文本转语音的基础。
  • Whisper: 开放AI的语音识别模型,用于提取音频内容编码。
  • BigVGAN: NVIDIA提供的高质量音频生成模型。
  • Speaker Encoder (Timbre Encoding): 如@mueller91的工作,用于捕捉音色特征。
  • HuBERT: 利用旋转位置嵌入来增强音频理解。
  • NSF-iSTFTNet: 速度优化,来自Zhuiyi Technology的模型。

安装与配置详细步骤

环境准备

步骤1: 软件要求

确保你的系统已安装Python 3.7+ 和 Git。推荐安装Anaconda以方便管理环境。

步骤2: 创建虚拟环境
conda create -n sovits-env python=3.7
conda activate sovits-env

项目克隆与依赖安装

步骤3: 克隆项目
git clone https://github.com/PlayVoice/so-vits-svc-5.0.git
cd so-vits-svc-5.0
步骤4: 安装依赖

在项目根目录下运行以下命令安装所有必需的库,注意Whisper已被内置,无需单独安装。

pip install -r requirements.txt

预训练模型和数据下载

步骤5: 下载预训练模型与组件
  • Speaker Encoder: 下载best_model.pth.tarspeaker_pretrain/
  • Whisper Model: 获取whisper-large-v2.pt放置于whisper_pretrain/
  • Hubert Soft Model: 将hubert-soft-0d54a1f4.pt置于hubert_pretrain/
  • CrePE Pitch Extractor: 把完整的full.pth放入crepe/assets/
  • Pretrained Model: 拷贝sovits5.0_pretrain.pthvits_pretrain/
步骤6: 数据集准备与处理

准备或获取您想要转换声音的数据集,并按照说明进行音频分离、剪辑和归一化。之后,使用脚本进行预处理:

python svc_preprocessing.py -t 2

此步骤会生成所需的各种文件结构,包括声纹、音频片段及其对应的特征文件。

训练与推理前设置

步骤7: 配置文件调整

根据实际需求修改configs/base.yaml中的参数,比如设置pretrain路径、学习率等。

步骤8: 开始训练 (可选)

如果您要从头开始训练或继续之前的训练,使用以下命令:

python svc_trainer.py -c configs/base.yaml -n

或者,如果是恢复中断的训练:

python svc_trainer.py -c configs/base.yaml -n sovits5.0 -p chkpt/sovits5.0/***pth

进阶:推理与模型导出

步骤9: 导出推理模型

若要部署,首先导出模型:

python svc_export.py --config configs/base.yaml --checkpoint_path chkpt/sovits5.0/***pth
步骤10: 进行语音转换

执行推理命令进行语音转换,可以是默认设置或手动指定F0等参数:

python svc_inference.py --config configs/base.yaml --model sovits5.0.pth --spk /data_svc/singer/your_singer.npy --wave test.wav

确保替换上述命令中的路径和文件名以匹配您的具体设置。

至此,您已经完成了SO-VITS-SVC 5.0项目的安装、配置以及基本操作流程,现在可以开始探索和实验歌唱声音的转换与克隆了。记得在进行任何修改或训练前仔细阅读项目文档和配置细节,以充分利用这一强大的工具。

so-vits-svc-5.0 Core Engine of Singing Voice Conversion & Singing Voice Clone so-vits-svc-5.0 项目地址: https://gitcode.com/gh_mirrors/so/so-vits-svc-5.0

<think>好的,用户想了解如何将so-vits-svc项目进行云部署,需要教程和配置指南。首先,我需要整理已有的引用内容,看看有哪些相关的信息可以利用。 引用[2]提到了SO-VITS-SVC 5.0安装配置,以及恢复训练的命令,可能这部分内容在配置云端环境时会有帮助。引用[3]详细介绍了Amazon SageMaker Notebook实例,包括其预装的环境、存储服务连接和实例管理,这应该是云部署的一个可行方案。引用[4]提到So-Vits-Svc是一个基于SoftVC的歌唱声音转换工具,并提到了项目的快速启动,这可能涉及到部署的基本步骤。 接下来,我需要确定用户的需求可能包括哪些方面。云部署通常涉及环境准备、依赖安装配置调整、数据存储、训练和推理的步骤,以及可能的模型导出和API部署。用户可能没有明确说明使用的是哪家云服务,但根据引用[3],Amazon SageMaker是一个合适的选择,因此可以重点介绍这个平台。 需要考虑到用户可能对云服务不熟悉,所以步骤需要详细,比如如何创建Notebook实例,如何配置环境,如何处理数据存储(比如连接到S3),如何安装项目依赖,如何启动训练和推理,以及如何导出模型。同时,引用[2]中的命令示例可以用来展示训练和恢复训练的具体操作。 此外,用户可能还需要一些优化建议,比如选择GPU实例类型、使用分布式训练、监控资源使用情况等。这些内容在引用[3]中提到的实例类型和存储服务连接中可以找到支持。 需要注意的是,用户的问题是关于云部署,而引用中提到的SageMaker Notebook实例是一个托管环境,可能适合开发和调试,但生产部署可能需要更进一步的步骤,比如使用SageMaker的模型部署功能或者容器服务。不过,根据现有引用,可能需要集中在Notebook实例的使用上,因为引用[3]详细描述了它的功能。 最后,生成相关问题时要围绕云部署的扩展,比如不同云平台的差异、权限配置、分布式训练、性能优化和成本控制,这些能帮助用户进一步探索。</think>### So-Vits-SVC 云部署分步指南 #### 一、云环境准备 1. **选择云平台** 推荐使用$Amazon\ SageMaker$ Notebook实例[^3],其预装$PyTorch$框架且支持GPU加速,项目依赖兼容性强。创建实例时选择$ml.g4dn.xlarge$(含NVIDIA T4 GPU)或更高配置。 2. **存储配置** 通过$Amazon\ S3$创建存储桶存放训练数据模型文件,在Notebook中挂载存储: ```python import s3fs fs = s3fs.S3FileSystem(anon=False) fs.ls('s3://your-bucket-name/dataset/') # 验证存储连接 ``` #### 二、项目部署流程 1. **克隆代码库** 在Notebook终端执行: ```bash git clone https://github.com/svc-develop-team/so-vits-svc.git cd so-vits-svc ``` 2. **依赖安装** 使用Conda创建独立环境: ```bash conda create -n sovits python=3.8 conda activate sovits pip install -r requirements.txt # 注意需额外安装librosa==0.9.2 ``` 3. **配置文件修改** 修改$configs/base.yaml$关键参数: ```yaml train: batch_size: 16 # 根据GPU显存调整 num_workers: 8 # 建议为vCPU数量的75% data: training_files: 's3://your-bucket-name/metadata/train.txt' # 云端元数据路径 ``` #### 三、训练推理 1. **启动训练任务** 单GPU训练命令[^2]: ```bash python svc_trainer.py -c configs/base.yaml -n sovits5.0 -p chkpt/sovits5.0/ 2>&1 | tee train.log ``` 2. **模型导出** 训练完成后导出推理模型: ```bash python svc_export.py --config configs/base.yaml --checkpoint_path chkpt/sovits5.0/model_80000.pt ``` #### 四、生产环境部署 1. **API服务封装** 使用$Flask$构建推理接口: ```python from flask import Flask, request app = Flask(__name__) @app.route('/infer', methods=['POST']) def infer(): audio = request.files['audio'].read() result = svc_model.convert(audio) return result ``` 2. **容器化部署** 创建Dockerfile: ```dockerfile FROM pytorch/pytorch:1.11.0-cuda11.3-cudnn8-runtime COPY . /app WORKDIR /app RUN pip install -r requirements.txt EXPOSE 5000 CMD ["gunicorn", "app:app", "-b 0.0.0.0:5000"] ``` #### 五、优化建议 - 使用$Amazon\ EC2$ $p3.8xlarge$实例可进行多GPU分布式训练 - 通过$TensorBoard$监控损失曲线:`tensorboard --logdir=logs/` - 采用$EFS$存储实现多实例共享模型文件[^3]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

朱暖云Jennifer

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值