TinyUSB 项目推荐

TinyUSB 项目推荐

tinyusb An open source cross-platform USB stack for embedded system tinyusb 项目地址: https://gitcode.com/gh_mirrors/ti/tinyusb

1. 项目基础介绍和主要编程语言

TinyUSB 是一个开源的跨平台 USB 主机/设备栈,专为嵌入式系统设计。该项目旨在提供一个轻量级、内存安全且线程安全的 USB 协议栈,适用于各种微控制器。TinyUSB 的主要编程语言是 C,这使得它能够广泛兼容不同的硬件平台。

2. 项目的核心功能

TinyUSB 的核心功能包括:

  • 跨平台支持:适用于多种嵌入式系统,支持多种 CPU 架构。
  • 内存安全:设计时考虑了内存安全,没有动态内存分配。
  • 线程安全:所有中断事件都被推入中央队列,并在非中断上下文中处理,确保线程安全。
  • 多设备配置:支持多种设备配置,并能动态更改 USB 描述符。
  • 低功耗功能:支持低功耗功能,如挂起、恢复和远程唤醒。
  • 多种设备类支持:包括音频类、蓝牙主机控制器接口、通信设备类、设备固件更新、人机接口设备、大容量存储类、MIDI、网络(RNDIS、ECM、NCM)、测试和测量类、视频类等。

3. 项目最近更新的功能

根据最新的更新记录,TinyUSB 最近更新的功能包括:

  • Type-C PD 栈:支持 USB Type-C 和 Power Delivery 3.0(PD3.0),目前处于早期测试阶段。
  • OS 抽象层:进一步完善了对不同操作系统的支持,包括无操作系统、FreeRTOS、RT-Thread 和 Mynewt。
  • 新硬件支持:增加了对更多微控制器和开发板的支持,如 Raspberry Pi RP2040、Nuvoton NUC 120/121/125/126/505 等。
  • 性能优化:对现有功能的性能进行了优化,提高了整体稳定性和效率。

TinyUSB 是一个功能强大且灵活的 USB 协议栈,适用于各种嵌入式项目。无论是初学者还是经验丰富的开发者,都能从中受益。

tinyusb An open source cross-platform USB stack for embedded system tinyusb 项目地址: https://gitcode.com/gh_mirrors/ti/tinyusb

### LlamaIndex 多模态 RAG 实现 LlamaIndex 支持多种数据类型的接入与处理,这使得它成为构建多模态检索增强生成(RAG)系统的理想选择[^1]。为了实现这一目标,LlamaIndex 结合了不同种类的数据连接器、索引机制以及强大的查询引擎。 #### 数据连接器支持多样化输入源 对于多模态数据的支持始于数据收集阶段。LlamaIndex 的数据连接器可以从多个异构资源中提取信息,包括但不限于APIs、PDF文档、SQL数据库等。这意味着无论是文本还是多媒体文件中的内容都可以被纳入到后续的分析流程之中。 #### 统一化的中间表示形式 一旦获取到了原始资料之后,下一步就是创建统一而高效的内部表达方式——即所谓的“中间表示”。这种转换不仅简化了下游任务的操作难度,同时也提高了整个系统的性能表现。尤其当面对复杂场景下的混合型数据集时,良好的设计尤为关键。 #### 查询引擎助力跨媒体理解能力 借助于内置的强大搜索引擎组件,用户可以通过自然语言提问的形式轻松获得所需答案;而对于更复杂的交互需求,则提供了专门定制版聊天机器人服务作为补充选项之一。更重要的是,在这里实现了真正的语义级关联匹配逻辑,从而让计算机具备了一定程度上的‘认知’功能去理解和回应人类意图背后所蕴含的意义所在。 #### 应用实例展示 考虑到实际应用场景的需求多样性,下面给出一段Python代码示例来说明如何利用LlamaIndex搭建一个多模态RAG系统: ```python from llama_index import GPTSimpleVectorIndex, SimpleDirectoryReader, LLMPredictor, PromptHelper, ServiceContext from langchain.llms.base import BaseLLM import os def create_multi_modal_rag_system(): documents = SimpleDirectoryReader(input_dir='./data').load_data() llm_predictor = LLMPredictor(llm=BaseLLM()) # 假设已经定义好了具体的大型预训练模型 service_context = ServiceContext.from_defaults( chunk_size_limit=None, prompt_helper=PromptHelper(max_input_size=-1), llm_predictor=llm_predictor ) index = GPTSimpleVectorIndex(documents, service_context=service_context) query_engine = index.as_query_engine(similarity_top_k=2) response = query_engine.query("请描述一下图片里的人物表情特征") print(response) ``` 此段脚本展示了从加载本地目录下各类格式文件开始直到最终完成一次基于相似度排序后的top-k条目返回全过程。值得注意的是,“query”方法接收字符串参数代表使用者想要询问的内容,而在后台则会自动调用相应的解析模块并结合先前准备好的知识库来进行推理计算得出结论。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

江旭菊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值