Evaluate: 一个用于轻松评估机器学习模型和数据集的库

🤗 Evaluate: 一个用于轻松评估机器学习模型和数据集的库

evaluate 🤗 Evaluate: A library for easily evaluating machine learning models and datasets. evaluate 项目地址: https://gitcode.com/gh_mirrors/ev/evaluate

项目基础介绍和主要编程语言

🤗 Evaluate 是一个开源项目,旨在简化机器学习模型和数据集的评估过程。该项目主要使用 Python 编程语言开发,适合在数据科学和机器学习领域中使用。

项目核心功能

🤗 Evaluate 提供了以下核心功能:

  1. 实现多种流行指标:涵盖从自然语言处理到计算机视觉的各种任务,并包括特定数据集的指标。用户可以通过简单的命令(如 accuracy = load("accuracy"))加载这些指标,并在任何框架(如 Numpy、Pandas、PyTorch、TensorFlow、JAX)中使用。

  2. 模型比较和数据集评估:提供了用于比较模型差异和评估数据集的工具。

  3. 轻松添加新评估模块:用户可以创建新的评估模块,并将其推送到 🤗 Hub 上的专用空间,以便轻松比较不同指标及其输出。

项目最近更新的功能

🤗 Evaluate 最近更新的功能包括:

  1. 新增评估模块:通过 evaluate-cli create [metric name] 命令,用户可以创建新的评估模块并将其推送到 🤗 Hub。

  2. 改进的文档和示例:提供了更详细的文档和使用示例,帮助用户更好地理解和使用各种评估指标。

  3. 社区贡献支持:增加了对社区贡献的支持,用户可以轻松添加自己的指标,并与他人协作。

通过这些更新,🤗 Evaluate 进一步简化了机器学习模型和数据集的评估过程,为用户提供了更强大的工具和更丰富的功能。

evaluate 🤗 Evaluate: A library for easily evaluating machine learning models and datasets. evaluate 项目地址: https://gitcode.com/gh_mirrors/ev/evaluate

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

尹恒翼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值