基于差分隐私的联邦学习项目推荐

基于差分隐私的联邦学习项目推荐

Differential-Privacy-Based-Federated-Learning Differential-Privacy-Based-Federated-Learning 项目地址: https://gitcode.com/gh_mirrors/di/Differential-Privacy-Based-Federated-Learning

1. 项目基础介绍和主要编程语言

项目名称: Differential-Privacy-Based-Federated-Learning
项目链接: GitHub - wenzhu23333/Differential-Privacy-Based-Federated-Learning
主要编程语言: Python

该项目是一个基于差分隐私(Differential Privacy, DP)的联邦学习(Federated Learning, FL)开源项目。联邦学习是一种分布式机器学习方法,允许在不共享数据的情况下训练模型,而差分隐私则是一种保护数据隐私的技术,通过添加噪声来隐藏个体数据的影响。

2. 项目核心功能

该项目的主要功能包括:

  • 差分隐私机制: 支持Laplace和Gaussian两种差分隐私机制,分别用于不同的隐私保护需求。
  • 联邦学习框架: 提供了基于差分隐私的联邦学习框架,支持多种数据集(如MNIST、CIFAR-10、FEMNIST、Fashion-MNIST、Shakespeare)和模型(如CNN、MLP、LSTM)。
  • 隐私预算管理: 通过简单的组合(Simple Composition)和矩会计(Moments Accountant)方法来管理隐私预算,确保在多次迭代中保持隐私保护。
  • 本地更新: 每个客户端的本地更新轮数固定为1,以确保差分隐私的敏感度计算准确。

3. 项目最近更新的功能

最近更新的功能包括:

  • Opacus库集成: 使用Opacus库进行每样本梯度裁剪(Per Sample Gradient Clip),限制每个样本计算的梯度范数,从而减少GPU内存的使用。
  • 本地训练轮数固定: 将本地训练轮数固定为1,以避免在改变本地迭代轮数时重新计算差分隐私的敏感度。
  • 新数据集支持: 增加了对更多数据集的支持,如FEMNIST和Shakespeare,丰富了实验场景。
  • 代码优化: 对代码进行了优化,提高了运行效率和可读性,同时增加了更多的注释和文档说明。

该项目是一个非常有价值的开源项目,适合对差分隐私和联邦学习感兴趣的研究者和开发者使用。通过集成多种差分隐私机制和联邦学习框架,该项目为隐私保护下的分布式机器学习提供了强大的工具和资源。

Differential-Privacy-Based-Federated-Learning Differential-Privacy-Based-Federated-Learning 项目地址: https://gitcode.com/gh_mirrors/di/Differential-Privacy-Based-Federated-Learning

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

周洵蔷Gentle

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值