基于MATLAB的回归与分类算法实现

基于MATLAB的回归与分类算法实现

matlab_algorithms.rar项目地址:https://gitcode.com/open-source-toolkit/ad5db

项目描述

本仓库包含了基于MATLAB程序的各种回归和分类算法的实现。这些代码是我之前在项目和学习过程中积累的成果,涵盖了多种常见的机器学习算法。每个算法都有详细的实现和注释,方便学习和使用。

包含的算法

  • MLR - 多元线性回归:用于多变量线性回归分析。
  • PCA - 主成分分析:用于数据降维和特征提取。
  • PLS - 偏最小二乘:结合了多元线性回归和主成分分析的优点。
  • LogisticR - 逻辑斯蒂回归:用于二分类问题。
  • Ganzhiji - 感知机:一种简单的二分类线性分类器。
  • PSO - 粒子群优化:一种基于群体智能的优化算法。
  • KNN - K近邻:基于距离的分类算法。
  • Bayes - 贝叶斯:基于贝叶斯定理的分类算法。
  • OSC - 正交信号校正:用于信号处理中的噪声去除。
  • GDescent - 梯度下降:用于优化问题的迭代算法。
  • ANN - 人工神经网络:一种模拟人脑神经网络的计算模型。
  • BOOSTING - 提升算法:通过组合多个弱分类器来提升分类性能。

使用方法

  1. 克隆仓库

    git clone https://github.com/yourusername/your-repo.git
    
  2. 打开MATLAB: 在MATLAB中打开仓库目录,选择相应的算法文件运行。

  3. 查看结果: 运行后,MATLAB会输出相应的结果和可视化图表。

依赖

  • MATLAB R2018a 或更高版本

贡献

欢迎大家提出问题、建议或贡献代码。请通过提交Issue或Pull Request来参与项目。

许可证

本项目采用MIT许可证,详情请参阅LICENSE文件。

联系

如有任何问题或建议,请联系 your.email@example.com


希望这个仓库能帮助你更好地理解和应用各种回归和分类算法!

matlab_algorithms.rar项目地址:https://gitcode.com/open-source-toolkit/ad5db

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

劳筝千Daphne

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值