基于MATLAB的回归与分类算法实现
matlab_algorithms.rar项目地址:https://gitcode.com/open-source-toolkit/ad5db
项目描述
本仓库包含了基于MATLAB程序的各种回归和分类算法的实现。这些代码是我之前在项目和学习过程中积累的成果,涵盖了多种常见的机器学习算法。每个算法都有详细的实现和注释,方便学习和使用。
包含的算法
- MLR - 多元线性回归:用于多变量线性回归分析。
- PCA - 主成分分析:用于数据降维和特征提取。
- PLS - 偏最小二乘:结合了多元线性回归和主成分分析的优点。
- LogisticR - 逻辑斯蒂回归:用于二分类问题。
- Ganzhiji - 感知机:一种简单的二分类线性分类器。
- PSO - 粒子群优化:一种基于群体智能的优化算法。
- KNN - K近邻:基于距离的分类算法。
- Bayes - 贝叶斯:基于贝叶斯定理的分类算法。
- OSC - 正交信号校正:用于信号处理中的噪声去除。
- GDescent - 梯度下降:用于优化问题的迭代算法。
- ANN - 人工神经网络:一种模拟人脑神经网络的计算模型。
- BOOSTING - 提升算法:通过组合多个弱分类器来提升分类性能。
使用方法
-
克隆仓库:
git clone https://github.com/yourusername/your-repo.git
-
打开MATLAB: 在MATLAB中打开仓库目录,选择相应的算法文件运行。
-
查看结果: 运行后,MATLAB会输出相应的结果和可视化图表。
依赖
- MATLAB R2018a 或更高版本
贡献
欢迎大家提出问题、建议或贡献代码。请通过提交Issue或Pull Request来参与项目。
许可证
本项目采用MIT许可证,详情请参阅LICENSE文件。
联系
如有任何问题或建议,请联系 your.email@example.com。
希望这个仓库能帮助你更好地理解和应用各种回归和分类算法!
matlab_algorithms.rar项目地址:https://gitcode.com/open-source-toolkit/ad5db