Matlab中基于RRT* + APF的二值地图动态避障算法实现
RRTapf.zip项目地址:https://gitcode.com/open-source-toolkit/df3c86
概述
本项目实现了在复杂动态环境下的机器人自动导航功能,通过结合高效的RRT*( Rapidly-exploring Random Tree Star)全局路径规划算法和吸引力/排斥力场(APF, Attraction-Repulsion Potential Field)局部动态避障策略。目标在于使机器人能够在具有实时移动障碍物的真实二值化地图上找到从起点到终点的安全路径。
主要特点
-
地图处理:采用真实场景转换而来的二值地图,以适应复杂的导航需求。地图可附加多动态障碍物,模拟实际环境中障碍物的不确定性。
-
机器人模型:
- 支持自定义机器人的最大线速度和角速度,增强控制灵活性。
- 实时响应,依据全局规划路径进行动态调整。
-
动态障碍物:
- 允许用户添加任意数量、任意形状及尺寸的移动障碍物,并在仿真中实时移动,增加挑战性。
- 动态显示,提升仿真的真实性。
-
算法核心:
- RRT*算法负责在考虑静态与初始化动态障碍物的情况下生成初始路径。
- APF算法在执行阶段作用于机器人,根据障碍物的实时位置调整路径,确保动态避障。
-
可视化结果:
- 展示完整的二值化环境图,清晰标出规划路径。
- 动态演示障碍物移动与机器人避障过程,直观理解算法效果。
-
便捷运行:提供完整的Matlab源代码,用户无需额外配置,即可快速启动并观察算法效果。
文件结构
main.m
: 程序入口,用于启动整个仿真流程。rrt_star.m
: RRT*算法实现模块。apf躲避算法.m
: 基于APF的动态避障算法实现。地图数据
: 包含用于测试的二值化地图及其他配置文件。障碍物管理
: 用于添加和管理动态障碍物的脚本。结果显示
: 处理和显示仿真结果的脚本。
快速入门
- 解压提供的压缩包至本地目录。
- 打开MATLAB,并定位到解压后的文件夹。
- 运行
main.m
文件。 - 根据提示配置必要的参数(如机器人速度、初始位置等)。
- 观察并分析仿真结果,享受机器人如何智慧地穿越动态障碍物。
注意事项
- 请确保您的MATLAB版本兼容项目中的所有函数和工具箱。
- 在首次运行前,检查是否有特定的MATLAB工具箱需要安装,如图形处理或优化工具箱。
- 考虑到性能与精确度的平衡,某些参数可能需要根据实际应用情况进行微调。
加入机器人研究与开发的旅程,探索智能避障技术的奇妙世界!
RRTapf.zip项目地址:https://gitcode.com/open-source-toolkit/df3c86