【论文笔记】CVPR2020 Rethinking Computer-aided Tuberculosis Diagnosis

这篇论文介绍了在CVPR上罕见的使用医疗数据的研究,特别是针对肺结核的诊断。研究者创建了一个大规模的TBX11K肺部X射线图像数据集,包含健康、活动性肺结核、潜伏性肺结核和非肺结核四种类别,并用边界框标注了肺结核区域。他们改造了SSD、RetinaNet、Faster-RCNN和FCOS等对象检测器,进行同时的图像分类和肺结核区域检测。实验结果显示,Faster-RCNN和SSD在性能上表现优异。
摘要由CSDN通过智能技术生成

在cvpr上少见的使用medical data的paper
在这里插入图片描述

Contributions

  • 收集了新的很大的TB dataset:Tuberculosis X-ray (TBX11K) dataset,包括:
    11200 X-ray Images
    Image-level annotation + TB area annotation using bounding boxes
    Image-level annotations include 4 classes: healthy, active TB, latent TB, & unhealthy but non-TB

  • Reform existing object detectors to perform simultaneous image classification and TB area detection (SSD, RetinaNet, Faster-RCNN, FCOS),并定义了classification 和 detection 的 metrics。 作为dataset的baselines

Methods

  • the classification branch learns to classify X-rays into 3 classes: healthy, sick but non-TB, and TB
    evaluation metrics: accuracy, auc, sensitivity…

  • the detection branch learns to detec

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值