论文解读:Structural Optimization Makes Graph Classification Simpler and Better

该论文提出结构优化方法,包括WL-ET核和ETL算法,用于图分类任务。通过优化编码树(ET)减少复杂度,提高性能。结构熵的概念被引入来指导ET的生成,而Hierarchical Reporting Scheme则用于特征组合。实验表明,这种方法既简化了计算,又提高了分类效果。
摘要由CSDN通过智能技术生成

Structural Optimization Makes Graph Classification Simpler and Better

About This Paper

Junran Wu, Jianhao Li, Yicheng Pan, Ke Xu

State Key Lab of Software Development Environment, Beihang University

http://arxiv.org/abs/2109.02027

Preliminary

我们要做的是 图分类任务 (Graph Classification).

主要有两种范式:核方法以及神经网络方法。

针对这两种范式,作者提出了两种新的算法:

核方法:WL-ET kernel, 对标之前的 WL subtree kernel

神经网络方法:ETL, 对标之前的 GNN

ET=Encoding Tree, WL=Weisfeiler-Lehman, ETL=Encoding Tree Learning

Structural Optimization

在进行 WL-ET kernel 的计算以及 ETL 之前,首先得有 ET, 即 Encoding Tree.

在介绍 ET 前,先介绍结构熵。

给定 Graph G G G, 我们可以找到它的一个划分,划分的每个元素都是一棵 Tree,基于 Tree 可以计算一个熵值:结构熵。

关于划分以及结构熵,可以参考 My Blog.

对于图 G = ( V , E , w ) G=(V,E,w) G=(V,E,w) , 它的一棵 Tree (记作 T \mathcal{T} T) 的结构熵为:

H T ( G ) = − ∑ α ∈ T , α ≠ λ g α vol ⁡ ( V ) log ⁡ vol ⁡ ( α ) vol ⁡ ( α − ) \mathcal{H}^{\mathcal{T}}(G)=-\sum_{\alpha \in \mathcal{T}, \alpha \neq \lambda} \frac{g_{\alpha}}{\operatorname{vol}(V)} \log \frac{\operatorname{vol}(\alpha)}{\operatorname{vol}\left(\alpha^{-}\right)} HT(G)=αT,α=λvol(V)gαlogvol(α)vol(α)

其中, α ∈ T \alpha \in \mathcal{T} αT 并且 α ≠ λ \alpha \neq \lambda α<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值