维纳-辛钦定理指出:一个信号的功率谱密度就是该信号自相关函数的傅里叶变换。
即: 信号的功率谱密度和信号的自相关函数是一个傅里叶变换对
信号
x(t)
的自相关函数是:
Rx(t)=1π∫∞0Gx(w)cos(wt)dw
信号
x(t)
的自功率谱密度是:
Gx(w)=2∫∞0Rx(t)cos(wt)dt
由于信号的自相关函数计算量大,所以信号的自相关函数通常不直接计算,而是用信号的自功率谱密度的逆FFT变换来计算。
注:在旋转机械的故障诊断中,周期信号最主要的信号,而信号的周期和信号的频率有很强的数学关系,这也是功率谱和自相关函数关系的根源,自相关函数反映信号的周期性,功率谱密度反映信号在各个频率上的能量。白噪声是在整个频谱上能量不变的信号,即一条平行于X轴的直线,更具傅里叶变换的性质,其傅里叶反变换(信号的自相关函数)是狄拉克函数,即冲击函数。